Towards a Sustainable Future
Present and Future Energy Policy Assessment for Residential Envelopes in Mexico
DOI:
https://doi.org/10.18861/ania.2025.15.2.4159Keywords:
Climate change mitigation, developing countries, energy prospects, housing policy, social housingAbstract
Latin American countries implement regulations to improve energy efficiency in housing in the face of climate change. The objective of this study was to evaluate the thermal performance and mandatory policies for energy efficiency in buildings in Mexico throughout the 21st century. This study developed a methodology with indicators of climate change mitigation and thermal comfort, applied to social housing. A numerical analysis was conducted considering two envelope improvement scenarios and their projections for 2024, 2050 and 2100. The results indicate a reduction of about 4 °C in the operative temperature by improving the envelope compared to the reference case. The proposed methodology represents a tool to evaluate energy policies and anticipate their effectiveness in the short, medium and long term, facilitating the design of new and used housing, as well as the implementation of strategies for a sustainable and equitable future.
Downloads
References
Alford-Jones, K. (2022). How injustice can lead to energy policy failure: A case study from Guatemala. Energy Policy, 164(March), 112849. https://doi.org/10.1016/j.enpol.2022.112849
Alhazmi, M., Sailor, D. J., & Anand, J. (2022). A new perspective for understanding actual anthropogenic heat emissions from buildings. Energy and Buildings, 258, 111860. https://doi.org/10.1016/j.enbuild.2022.111860
Ali, M. H., & Abustan, I. (2014). A new novel index for evaluating model performance. Journal of Natural Resources and Development, 2002, 1–9. https://doi.org/10.5027/jnrd.v4i0.01
Alpuche Cruz, M. G., & Duarte Aguílar, E. A. (2017). La NOM-020-ENER-2011 en viviendas económicas ubicadas en diferentes regiones climáticas de México. Vivienda y Comunidades Sustentables, 1(1), 75–90. https://doi.org/10.32870/rvcs.v0i1.6
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2021). ASHRAE Standard 55-2020. In ASHRAE (Vol. 2, Issue 1). https://doi.org/10.1016/0140-7007(79)90114-2
Andrew, K., Majerbi, B., & Rhodes, E. (2022). Slouching or speeding toward net zero? Evidence from COVID-19 energy-related stimulus policies in the G20. Ecological Economics, 201(August), 107586. https://doi.org/10.1016/j.ecolecon.2022.107586
ASHRAE. (2018). ANSI/ ASHRAE/ IES Standard 100-2018: Energy Efficiency in Existing Buildings. 2018, 14.
Bai, H., Gao, W., Zhang, Y., & Wang, L. (2022). Assessment of health benefit of PM2.5 reduction during COVID-19 lockdown in China and separating contributions from anthropogenic emissions and meteorology. Journal of Environmental Sciences (China), 115, 422–431. https://doi.org/10.1016/j.jes.2021.01.022
Belaïd, F. (2022). Implications of poorly designed climate policy on energy poverty: Global reflections on the current surge in energy prices. Energy Research and Social Science, 92(August), 102790. https://doi.org/10.1016/j.erss.2022.102790
Belaïd, F., & Flambard, V. (2023). Impacts of income poverty and high housing costs on fuel poverty in Egypt: An empirical modeling approach. Energy Policy, 175(January). https://doi.org/10.1016/j.enpol.2023.113450
Bodach, S., & Hamhaber, J. (2010). Energy efficiency in social housing: Opportunities and barriers from a case study in Brazil. Energy Policy, 38(12), 7898–7910. https://doi.org/10.1016/j.enpol.2010.09.009
Cadaval, M., Regueiro-Ferreira, R. M., & Calvo, S. (2022). The role of the public sector in the mitigation of fuel poverty in Spain (2008–2019): Modeling the contribution of the Bono Social de Electricidad. Energy, 258, 124717. https://doi.org/10.1016/j.energy.2022.124717
Cengel, Y. A., & Ghajar, A. J. (2015). Heat and Mass Transfer. Fundamentals and applications (Mc Graw Hill Education, Ed.; Fifth Edit).
Chévez, P. J., Ruggeri, E., Martini, I., & Discoli, C. (2019). Factores Clave En La Implementación De Políticas Energéticas En Italia. Revista Produção e Desenvolvimento, 5, 1–21. https://doi.org/10.32358/rpd.2019.v5.384
Diario Oficial de la Federación. (2009). NMX-C-460-ONNCCE-2009 BUILDING INDUSTRY – INSULATION – “R” VALUE FOR THE HOUSING ENVELOPE BY THERMAL ZONE FOR MEXICAN REPUBLIC – SPECIFICATION AND VERIFICATION.
Diario Oficial de la Federación. (2011). Mexican Official Standard NOM-020-ENER-2011. http://dof.gob.mx/nota_detalle.php?codigo=5203931&fecha=09/08/2011
Encuesta Nacional de Vivienda. (2021). Comunicado de Prensa. Encuesta Nacional de vivienda (ENVI), 2020 . Principales resultados. In Comunicado de Prensa 493/21 (Vol. 1).
Escandón, R., Suárez, R., & Sendra, J. J. (2019). Field assessment of thermal comfort conditions and energy performance of social housing : The case of hot summers in the Mediterranean climate. Energy Policy, 128(July 2018), 377–392. https://doi.org/10.1016/j.enpol.2019.01.009
European Committee for Standardization. (2001). ISO 7726 Ergonomics of the thermal environment — Instruments for measuring physical quantities. In Iso 7726:2001 (Issue 1).
Fabbri, Kristian, Gaspari, J. (2021). Mapping the energy poverty: A case study based on the energy performance certificates in the city of Bologna. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2021.110718
Gatto, A. (2022). The energy futures we want: A research and policy agenda for energy transitions. Energy Research and Social Science, 89(March), 102639. https://doi.org/10.1016/j.erss.2022.102639
Griego, D., Krarti, M., & Hernández-Guerrero, A. (2012). Optimization of energy efficiency and thermal comfort measures for residential buildings in Salamanca, Mexico. Energy and Buildings, 54, 540–549. https://doi.org/10.1016/j.enbuild.2012.02.019
Hewitt, R. J., Cremades, R., Kovalevsky, D. V., & Hasselmann, K. (2021). Beyond shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs): climate policy implementation scenarios for Europe, the US and China. Climate Policy, 21(4), 434–454. https://doi.org/10.1080/14693062.2020.1852068
INEGI. (2020). Marco Geoestadístico Municipal. Sistema de Clasificación Climática de Köppen (1936) Modificado Por Enriqueta García (1973) e INEGI (1976). http://cuentame.inegi.org.mx/mapas/pdf/nacional/tematicos/climas.pdf
INEGI; Instituto Nacional de Estadística y Geografía. (2022). Inventario Nacional de Vivienda. https://www.inegi.org.mx/temas/vivienda/
INEGI, Instituto Nacional de Geografía, E. e I. (2023). Population. Population. https://cuentame.inegi.org.mx/poblacion/habitantes.aspx?tema=P
Jiglau, G., Bouzarovski, S., Dubois, U., Feenstra, M., Gouveia, J. P., Grossmann, K., Guyet, R., Herrero, S. T., Hesselman, M., Robic, S., Sareen, S., Sinea, A., & Thomson, H. (2023). Looking back to look forward: Reflections from networked research on energy poverty. IScience, 26(3), 1–22. https://doi.org/10.1016/j.isci.2023.106083
Jonek-Kowalska, I. (2022). Multi-criteria evaluation of the effectiveness of energy policy in Central and Eastern European countries in a long-term perspective. Energy Strategy Reviews, 44(May), 100973. https://doi.org/10.1016/j.esr.2022.100973
Littlewood, J. R., Karani, G., Atkinson, J., Bolton, D., Geens, A. J., & Jahic, D. (2017). Introduction to a Wales project for evaluating residential retrofit measures and impacts on energy performance, occupant fuel poverty, health and thermal comfort. Energy Procedia, 134, 835–844. https://doi.org/10.1016/j.egypro.2017.09.538
Liu, Y., Luo, Z., & Grimmond, S. (2023). Impact of building envelope design parameters on diurnal building anthropogenic heat emission. Building and Environment, 234(February), 110134. https://doi.org/10.1016/j.buildenv.2023.110134
Martín-Domínguez, I. R., Romero-Pérez, C. K., Nájera-Trejo, M., & Rodríguez-Muñoz, N. A. (2017). Implicaciones en las consideraciones metodológicas de la NOM-020-ENER. Semana Nacional de Energía Solar, 52(614).
Medrano-Gómez, L. E., & Izquierdo, A. E. (2017). Social housing retrofit: Improving energy efficiency and thermal comfort for the housing stock recovery in Mexico. Energy Procedia, 121, 41–48. https://doi.org/10.1016/j.egypro.2017.08.006
Ruiz Torres, R. P. (2019). Evaluación Del Sistema Termolosa Entre La Medición Experimental Y El Calculado Con La Nmx-C-460-Onncce-2009. Vivienda y Comunidades Sustentables, 2019(6), 119–136. https://doi.org/10.32870/rvcs.v0i6.126
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American meteorological Society, 93(4), 485-498. https://journals.ametsoc.org/view/journals/bams/93/4/bams-d-11-00094.1.xml
Secretaría de Energía. (2013). Prospectiva del Sector Eléctrico 2013-2027.
Sistema Meteorológico Nacional. (2020). Climatic conditions. https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/normales-climatologicas-por-estado
Vázquez-Torres, C. E., Sotelo-Salas, C., & Grajeda-Rosado, R. M. (2022). Efecto de la NMX-C-460-ONNCCE-2009 sobre el Comportamiento Térmico en Viviendas de Interés Social en Clima Templado Sub-Húmedo. In Universidad Autónoma Metropolitana (Ed.), Estudios de Arquitectura Bioclimática (pp. 109–124).
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin - American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Claudia Eréndira Vázquez-Torres, Gabriel Hernández P´erez

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal and its contents are licensed under the Creative Commons - Attribution 4.0 International License (CC BY 4.0). It is possible to copy, communicate and publicly distribute its content as long as the individual authors and the name of this publication are cited, as well as the publishing institution (Universidad ORT Uruguay).