Fachadas verdes tradicionales como estrategia de ahorro energético estival en ciudades de clima árido

Autores/as

DOI:

https://doi.org/10.18861/ania.2025.15.2.4007

Palabras clave:

Fachadas verdes, Ahorro de energía, Arquitectura bioclimática, Desarrollo Sostenible

Resumen

Esta investigación evalúa la incidencia de las Fachadas Verdes Tradicionales (FVT) sobre la demanda de energía de una vivienda unifamiliar representativa de la tipología residencial del Área Metropolitana de Mendoza en verano. Se compara la prestación de la FVT versus el uso de una tecnología de aislación tradicional (Poliestireno Expandido EPS). El estudio se estructura en tres etapas: caracterización de las propiedades opto-térmicas de las FVT, determinación del ahorro energético asociado a su implementación, mediante simulación térmica con EnergyPlus, y la contrastación de los resultados alcanzados con los derivados del uso de EPS. Se observa que aislar la totalidad de la envolvente vertical mediante FVT y EPS, genera un ahorro energético en días estivales con altas temperaturas, del orden de 26.4 % y 81.8 % para FVT y EPS respectivamente. Y en días de temperaturas promedio los ahorros oscilan entre el 49.3 % y 93.8 %. Esta investigación identifica que las posibilidades de ahorro energético que ofrece la FVT dependen de la magnitud de las temperaturas exteriores. Además el ahorro energético cuantificado es superior al reportado en la literatura internacional evidenciando que su uso es más efectivo en climas áridos con altos niveles de irradiancia solar y cielos mayormente despejados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Blanco, I., Vox, G., Schettini, E., & Russo, G. (2021). Assessment of the environmental loads of green façades in buildings: a comparison with un-vegetated exterior walls. Journal of Environmental Management, 294, 112927. https://doi.org/10.1016/j.jenvman.2021.112927

Bustami, R. A., Belusko, M., Ward, J., & Beecham, S. (2018). Vertical greenery systems : A systematic review of research trends. Building and Environment, 146(August), 226-237. https://doi.org/10.1016/j.buildenv.2018.09.045

Caballero Montes, J. L., Ríos Ventura, F. G., & Alavéz Ramírez, R. (2024). Mejoramiento de la habitabilidad de la vivienda construida con fondos de remesas mediante estrategias bioclimáticas pasivas Habitability improvement of remittance funds built housing through passive bioclimatic strategies Melhoria da habitabilidade da cas. Anales de Investigación En Arquitectura, 14(1). https://doi.org/10.18861/ania.2024.14.1.3427

Coma, J., Pérez, G., de Gracia, A., Burés, S., Urrestarazu, M., & Cabeza, L. F. (2017). Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment, 111, 228–237. https://doi.org/10.1016/j.buildenv.2016.11.014

Correa, E., Ruiz, M. A., Canton, A., & Lesino, G. (2012). Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina. Building and Environment, 58, 219–230. https://doi.org/10.1016/j.buildenv.2012.06.007

Djedjig, R., Bozonnet, E., & Belarbi, R. (2015). Analysis of thermal effects of vegetated envelopes: Integration of a validated model in a building energy simulation program. Energy and Buildings, 86, 93–103. https://doi.org/10.1016/j.enbuild.2014.09.057

Dong, Q. (2025). Energy Simulation-Based Design Optimization for Residential Buildings Using EnergyPlus. 9th International Conference on Green Energy and Applications (ICGEA), Singapore, Singapore, 2025, pp. 1-4. https://doi.org/10.1109/ICGEA64602.2025.11009325

EnergyPlus, Copyright (c) 1996-2021, The Board of Trustees of the University of Illinois, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other contributors.

Esteves Miramont, A., Gelardi, D., & Balter, J. (2009). Vivienda unifamiliar solar pasiva en el centro-oeste de Argentina. Avances en Energías Renovables y Medio Ambiente, 13. https://sedici.unlp.edu.ar/handle/10915/98570

Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115–133. https://doi.org/10.2148/benv.33.1.115

Karimi, K., Farrokhzad, M., Roshan, G., & Aghdasi, M. (2022). Evaluation of effects of a green wall as a sustainable approach on reducing energy use in temperate and humid areas. Energy and Buildings, 262, 112014. https://doi.org/10.1016/j.enbuild.2022.112014

Mazzocco, M. P., Filippín, C., Sulaiman, H., & Larsen, S. F. (2018). Performance energética de una vivienda social en Argentina y su rehabilitación basada en simulación térmica. Ambiente Construído, 18(4), 215-235. https://doi.org/10.1590/s1678-86212018000400302

Pérez, G., Coma, J., Sol, S., & Cabeza, L. F. (2017). Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Applied Energy, 187, 424–437. https://doi.org/10.1016/j.apenergy.2016.11.055

Pujol, M. O., & Bisbal-grandal, I. (2019). DIVERSIDAD EN LA DISPERSIÓN: MORFOLOGÍA DE LAS ÁREAS RESIDENCIALES EN EL PERIURBANO DEL GRAN MENDOZA. Revista Urbano, 20, 46–63.https://doi.org/https://doi.org/10.22320/07183607.2019.22.40.03

Suárez, P., Cantón, M. A., & Correa, É. (2023). Comportamiento térmico estacional de fachadas verdes conformadas por especies trepadoras perennes en muros másicos orientados al oeste. Estudio de casos en zonas áridas. Cuaderno Urbano, 35(35), 83–105. https://doi.org/10.30972/crn.35356773

Suárez-Gómez, P. A., Cantón-Ivanissevich, M. A., & Correa-Cantaloube, Érica N. . (2024). Evaluación de estrategias de enverdecimiento vertical en clima árido: el caso de las fachadas verdes. Revista de Arquitectura (Bogotá), 26(2), 75-90. https://doi.org/10.14718/RevArq.2024.26.5014

Vargas-Hernández JG, J Zdunek-Wielgołaska. 2021. Urban green infrastructure as a tool for controlling the resilience of urban sprawl. Environment, Development and Sustainability 23: 1335-1354. https://doi.org/10.1007/s10668-020-00623-2

Vox, G., Blanco, I., & Schettini, E. (2018). Green façades to control wall surface temperature in buildings. Building and Environment, 129(September 2017), 154–166. https://doi.org/10.1016/j.buildenv.2017.12.002

Zhang, Y., Yang, Y., Zhang, L., Zhao, C., Yan, J., Liu, M., & Zhao, L. (2022). Seasonal variation in leaf area index and its impact on the shading effects of vertical green facades in subtropical areas. Building and Environment, 225(May), 109629. https://doi.org/10.1016/j.buildenv.2022.109629

Zhang, Y., Zhang, L., & Meng, Q. (2022). Dynamic heat transfer model of vertical green façades and its co-simulation with a building energy modelling program in hot-summer/warm-winter zones. Journal of Building Engineering, 58(March), 105008. https://doi.org/10.1016/j.jobe.2022.105008

Descargas

Publicado

10.10.2025

Cómo citar

Suarez, P., Martínez, C., & Correa, Érica. (2025). Fachadas verdes tradicionales como estrategia de ahorro energético estival en ciudades de clima árido . Anales De Investigación En Arquitectura, 15(2). https://doi.org/10.18861/ania.2025.15.2.4007

Número

Sección

Artículos

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.