Spatial reasoning and its expression in the methodology of transition from 2D to 3D design in Architecture students

Authors

DOI:

https://doi.org/10.18861/ania.2025.15.2.4168

Keywords:

Spatial reasoning, spatial visualization, mental rotation, 2D-to-3D transition methodology, hands-on experience, 2D-to-3D analytical rubric, PSVT:V, PSVT:R, Purdue Spatial Visualization Test-PSVT, architectural education

Abstract

Spatial reasoning is essential in the architectural profession, and even more so at the beginning of their training, where it is necessary to coherently transform two-dimensional ideas into three-dimensional ones. The objective of the study is to analyze spatial reasoning through a hands-on experience applying the 2D-to-3D design transition methodology to architecture students, using a quantitative, descriptive-correlational approach. The sample consisted of 21 students from the Design Workshop I-2025 at a National University in Huánuco, Peru. To assess their spatial reasoning abilities, the Visualization of Developments (PSVT:V) and Visualization of Rotations (PSVT:R) subtests of the Purdue Spatial Visualization Test (PSVT) were administered, and the 2D–3D analytical rubric was used to evaluate practical experience. The results reported medium-to-high levels of spatial reasoning, with a slight preponderance of mental rotation, and although the relationships between PSVT:V, PSVT:R, total PSVT score, and design performance in practical experience were not statistically significant, consistent positive correlations were identified, whereby students with more developed spatial reasoning achieved better results when transitioning their designs from 2D to 3D, making the PSVT an important pedagogical predictor in the teaching of architectural design at the introductory levels. It is recommended to implement early diagnostic tools and active methodologies to strengthen spatial reasoning, as well as to replicate the study with larger samples.

Downloads

Download data is not yet available.

Author Biography

Bethsy Liliana Serrano Mariño, Universidad Privada Antenor Orrego

Arquitecta postulante al Doctorado en Educación, con estudios en Neurociencia Cognitiva y Neuroarquitectura- Universidad Antonio de Nebrija. Miembro de la Red de Investigadores en Diseño de la Universidad de Palermo, Argentina. 16 años como docente en la Escuela Profesional de Arquitectura de la Universidad Nacional Hermilio Valdizán-Perú. Con Reconocimiento Internacional, en el Concurso Latinoamericano de Diseño de Tenso-estructuras por el Instituto de Desarrollo Experimental de la Construcción (IDEC) de la Universidad Central de Venezuela.

References

Amro, D. K., & Dawoud, H. (2024). Influencing factors of spatial ability for architecture and interior design students: a fuzzy DEMATEL and interpretive structural model. Buildings, 14(9), 2934. https://doi.org/10.3390/buildings14092934

Bartlett, K. A., & Camba, J. D. (2023). Is this a real 3D shape? An investigation of construct validity and item difficulty in the PSVT:R. Visual Cognition, 31(3), 235–255. https://doi.org/10.1080/13506285.2023.2250508

Da Silva, C. V., Pereira, F. A., De Campos Belém, B., Ferreira, L. K. R., De Jesus Oliveira, L., Silva, J. D. S., Da Silva Vasconcelos, A. C., & De Oliveira Neves, L. E. (2024). Estudo sobre a Teoria da Aprendizagem de Jean Piaget. https://doi.org/10.51473/ed.al.edi10

Gomez-Tone, H. C., Martin-Gutierrez, J., & Valencia-Anci, B. K. (2021). Spatial skills training through drawing architectural spaces inside immersive virtual reality. In Smart innovation, systems and technologies (pp. 383–393). https://doi.org/10.1007/978-981-16-5063-5_31

Guay, R., Foundation, P. R., & Collection, E. T. S. T. (1976). Purdue Spatial Visualization Test.

Hong, J., Hnatyshyn, R., Santos, E. a. D., Maciejewski, R., & Isenberg, T. (2024). A survey of designs for combined 2D+3D visual representations. IEEE Transactions on Visualization and Computer Graphics, 30(6), 2888–2902. https://doi.org/10.1109/tvcg.2024.3388516

Korites, B. (2023). Graphics in three dimensions. In Apress eBooks (pp. 107–148). https://doi.org/10.1007/978-1-4842-9660-8_3

Lacombe, N., & Dias, T. (2023). Développer les compétences de rotation mentale chez les élèves. Une revue systématique de littérature. Revue De Mathématiques Pour L’école, 240, 29–45. https://doi.org/10.26034/vd.rm.2023.4107

Lara, H. P., & Parra, C. a. O. (2022). Análisis de la prueba estandarizada(PSVT: R), como ruta de diagnóstico, para la intervencióncon instrumentos, facilitadores del desarrollo de la habilidad espacial de rotación, esencial, en la comprensiónde la GeometríaDescriptiva. Scientia Et Technica, 27(1), 52–60. https://doi.org/10.22517/23447214.24823

Lavicza, Z., Abar, C. a. a. P., & Tejera, M. (2023). Spatial geometric thinking and its articulation with the visualization and manipulation of objects in 3D. Educação Matemática Pesquisa Revista Do Programa De Estudos Pós-Graduados Em Educação Matemática, 25(2), 258–277. https://doi.org/10.23925/1983-3156.2023v25i2p258-277

Münster, S., Apollonio, F. I., Bluemel, I., Fallavollita, F., Foschi, R., Grellert, M., Ioannides, M., Jahn, P. H., Kurdiovsky, R., Kuroczyński, P., Lutteroth, J., Messemer, H., & Schelbert, G. (2024). Visualization. In Synthesis lectures on engineers, technology, and society (pp. 129–163). https://doi.org/10.1007/978-3-031-43363-4_7

Porat, R., & Ceobanu, C. (2024). Enhancing Spatial Ability: a new integrated hybrid training approach for engineering and architecture students. Education Sciences, 14(6), 563. https://doi.org/10.3390/educsci14060563

Qin, Y., Yu, W., Fu, X., & Liu, Y. (2022). Cognitive mechanisms of 2D-to-3D spatial information transformation in haptic recognition of 2D images. Advances in Psychological Science, 30(8), 1804. https://doi.org/10.3724/sp.j.1042.2022.01804

Santos, C. E., Dias, M. A., & Braida, F. (2023). Spatial skills and the education of architecture and urbanism: use of Minecraft game for shape and geometry study. Blucher Design Proceedings, 687–698. https://doi.org/10.5151/sigradi2022-sigradi2022_224

Suciati, R. A., Sobarningsih, N., Sugilar, H., Farlina, E., & Juariah, N. (2023). Students’ error analysis in solving three dimensional problems in terms of spatial ability. AIP Conference Proceedings, 2634, 050005. https://doi.org/10.1063/5.0119743

Tiwari, S., Shah, B., & Muthiah, A. (2024). A Global overview of SVA—Spatial–Visual Ability. Applied System Innovation, 7(3), 48. https://doi.org/10.3390/asi7030048

Xu, C., & Huang, Y. (2024). Technological Innovation in Architectural Design Education: Empirical analysis and future directions of midjourney intelligent drawing software. Buildings, 14(10), 3288. https://doi.org/10.3390/buildings14103288

Zich, U. (2023). Origami and Descriptive Geometry: tangible models to enhance spatial skills. Nexus Network Journal, 25(S1), 277–284. https://doi.org/10.1007/s00004-023-00694-4

Published

2025-11-12

How to Cite

Serrano Mariño, B. L. (2025). Spatial reasoning and its expression in the methodology of transition from 2D to 3D design in Architecture students. Anales De Investigación En Arquitectura, 15(2). https://doi.org/10.18861/ania.2025.15.2.4168

Issue

Section

Original papers

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.