Optimization of the design of a public building with passive conditioning strategies in the town of Mar Chiquita, Argentina

Authors

  • Kristina Atanasoska Instituto de Investigaciones para el Desarrollo Urbano Tecnología y Vivienda - Facultad de Arquitectura, Urbanismo y Diseño - Universidad Nacional de Mar del Plata - Mar del Plata, Argentina https://orcid.org/0000-0002-6508-2575

DOI:

https://doi.org/10.18861/ania.2024.14.2.3967

Keywords:

energy efficiency, passive solar design, bioenvironmental design, thermal comfort, dynamic simulation, energy simulation, temperate cold maritime climate, infiltrations, window to wall ratio, use of shutters, sunspace

Abstract

The global building sector faces an increase in energy consumption and greenhouse gas emissions. In Argentina, the energy matrix is based on non-renewable sources, and the commercial and public sectors allocate nearly 50% of their energy to heating and cooling. This study focuses on the Mar Chiquita Interpretation Center, a building designed under sustainability criteria that uses a sunspace as a passive climate control strategy. The objective is to analyze the building's design and optimize it to achieve lower energy use for thermal conditioning. Through energy simulations conducted with EnergyPlus, different designs were evaluated concerning the window-to-wall ratio, infiltration, and the use of shutters to optimize thermal comfort and energy consumption. The results showed that an excessive proportion of windows contributes to overheating, while reducing infiltration improves thermal comfort in winter. The implementation of shutters during the day eliminates the need for mechanical cooling in summer, while their nighttime use in winter decreases the need for heating. In conclusion, the importance of passive solar design strategies in temperate cold and humid climates is highlighted, along with the need for further research on the window-to-wall ratio in buildings without sunspaces and to evaluate actual infiltrations after construction.

Downloads

Download data is not yet available.

Author Biography

Kristina Atanasoska, Instituto de Investigaciones para el Desarrollo Urbano Tecnología y Vivienda - Facultad de Arquitectura, Urbanismo y Diseño - Universidad Nacional de Mar del Plata - Mar del Plata, Argentina

Becaria Interna Doctoral de CONICET. Doctoranda en el Doctorado de Ciencias Aplicadas Mención Ambiente y Salud de la Universidad Nacional del Centro de la Provincia de Buenos Aires. Arquitecta de la Facultad de Arquitectura, Urbanismo y Diseño de la Universidad Nacional de Mar del Plata. Docente en el área tecnológico-constructiva y proyectual de la misma casa de estudios.

References

Andersen, M., Discoli, C. A., Melisa Viegas, G., & Martini, I. (2017). Monitoreo energético y estrategias de RETROFIT para viviendas sociales en clima frío. Revista Hábitat Sustentable, 7(2), 50-63. https://doi.org/10.22320/07190700.2017.07.02.05

Asdrubali, F., Cotana, F., & Messineo, A. (2012). On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period. Energies, 5(6), Article 6. https://doi.org/10.3390/en5061864

Atanasoska, K. (2021). Caracterización bioclimática de Mar del Plata.: Recomendaciones para el Diseño Arquitectónico. Investigación + Acción, 24. https://revistasfaud.mdp.edu.ar/ia/article/view/560

Bastos Porsani, G., Casquero-Modrego, N., Echeverria Trueba, J. B., & Fernández Bandera, C. (2023). Empirical evaluation of EnergyPlus infiltration model for a case study in a high-rise residential building. Energy and Buildings, 296, 113322. https://doi.org/10.1016/j.enbuild.2023.113322

Bataineh, K. M., & Fayez, N. (2011). Analysis of thermal performance of building attached sunspace. Energy and Buildings, 43(8), 1863-1868. https://doi.org/10.1016/j.enbuild.2011.03.030

Chandel, S. S., & Sarkar, A. (2015). Performance assessment of a passive solar building for thermal comfort and energy saving in a hilly terrain of India. Energy and Buildings, 86, 873-885. https://doi.org/10.1016/j.enbuild.2014.10.035

Felices Puertolas, R., Viñas Arrebola, C., & Losada Gonzalez, J. C. (2017). Análisis de la simulación y monitoreo real de un invernadero en la implicación térmica de un edificio. Un caso Práctico. Dyna Ingeniería e Industria, 92(1), 209-213. https://doi.org/10.6036/8202

Gil, S. (2021). «Eficiencia Energética en Argentina», apostando por conformar un sector energético más sostenible y eficiente en Argentina. https://doi.org/10.13140/RG.2.2.14886.86087

Gong, X., Akashi, Y., & Sumiyoshi, D. (2012). Optimization of passive design measures for residential buildings in different Chinese areas. Building and Environment, 58, 46-57. https://doi.org/10.1016/j.buildenv.2012.06.014

IRAM 11507-4. (2010). Carpintería de obra y fachadas integrales livianas. Ventanas exteriores.

IRAM 11603. (1996). Acondicionamiento térmico de edificios. Clasificación bioambiental de la República Argentina.

IRAM 11605. (1996). Acondicionamiento térmico de edificios. Condiciones de habitabilidad en edificios. Valores máximos de transmitancia térmica en cerramientos opacos.

IRAM 11900. (2018). Prestaciones energéticas en viviendas. Método de cálculo.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. https://doi.org/10.1127/0941-2948/2006/0130

Liu, Z., Wu, D., Li, J., Yu, H., & He, B. (2019). Optimizing Building Envelope Dimensions for Passive Solar Houses in the Qinghai-Tibetan Region: Window to Wall Ratio and Depth of Sunspace. Journal of Thermal Science, 28(6), 1115-1128. https://doi.org/10.1007/s11630-018-1047-7

Mercado, M. V., Barea-Paci, G. J., Esteves, A., & Filippín, C. (2018). Efecto de la ventilación natural en el consumo energético de un edificio bioclimático. Análisis y estudio mediante energy plus. Hábitat Sustentable, 54-67. https://doi.org/10.22320/07190700.2018.08.01.05

Ministerio de Economía. (2024). Balances Energéticos. Argentina.gob.ar. https://www.argentina.gob.ar/econom%C3%ADa/energ%C3%ADa/planeamiento-energetico/balances-energeticos

Molina, J. O., Lefebvre, G., Horn, M., & Gómez, M. M. (2020). Diseño de un módulo experimental bioclimático obtenido a partir del análisis de simulaciones térmicas para el centro poblado de Imata (4519 m s.n.m.) ubicado en Arequipa, Perú. Información tecnológica, 31(2), 173-186. https://doi.org/10.4067/S0718-07642020000200173

Monge-Barrio, A., & Sánchez-Ostiz, A. (2015). Energy efficiency and thermal behaviour of attached sunspaces, in the residential architecture in Spain. Summer Conditions. Energy and Buildings, 108, 244-256. https://doi.org/10.1016/j.enbuild.2015.09.037

Moreno-Rangel, A. (2021). Passivhaus. Encyclopedia, 1(1), Article 1. https://doi.org/10.3390/encyclopedia1010005

Morrissey, J., Moore, T., & Horne, R. E. (2011). Affordable passive solar design in a temperate climate: An experiment in residential building orientation. Renewable Energy, 36(2), 568-577. https://doi.org/10.1016/j.renene.2010.08.013

Muñoz, N., Thomas, L. P., & Marino, B. M. (2022). Infiltración en un edificio complejo. Anales AFA, 33(Special Fluids), 71-76. https://doi.org/10.31527/analesafa.2022.fluidos.71

Mushtaha, E., Salameh, T., Kharrufa, S., Mori, T., Aldawoud, A., Hamad, R., & Nemer, T. (2021). The impact of passive design strategies on cooling loads of buildings in temperate climate. Case Studies in Thermal Engineering, 28, 101588. https://doi.org/10.1016/j.csite.2021.101588

Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559-3573. https://doi.org/10.1016/j.rser.2012.03.045

Rempel, A. R., Rempel, A. W., Cashman, K. V., Gates, K. N., Page, C. J., & Shaw, B. (2013). Interpretation of passive solar field data with EnergyPlus models: Un-conventional wisdom from four sunspaces in Eugene, Oregon. Building and Environment, 60, 158-172. https://doi.org/10.1016/j.buildenv.2012.11.006

Resolución 148/2024 [Ministerio de Economía. Secretaría de Energía]. Programa de uso racional y eficiente de la energía en edificios públicos (PROUREE). 5 de julio de 2024.

Spanos, I., Simons, M., & Holmes, K. L. (2005). Cost savings by application of passive solar heating. Structural Survey, 23(2), 111-130. https://doi.org/10.1108/02630800510593684

Toroxel, J. L., & Silva, S. M. (2024). A Review of Passive Solar Heating and Cooling Technologies Based on Bioclimatic and Vernacular Architecture. Energies, 17(5), 1006. https://doi.org/10.3390/en17051006

U.N. Environment. (2024). Global Status Report for Buildings and Construction | UNEP - UN Environment Programme. https://www.unep.org/resources/report/global-status-report-buildings-and-construction

Zirnhelt, H. E., & Richman, R. C. (2015). The potential energy savings from residential passive solar design in Canada. Energy and Buildings, 103, 224-237. https://doi.org/10.1016/j.enbuild.2015.06.051

Published

2024-12-01

How to Cite

Atanasoska, K. (2024). Optimization of the design of a public building with passive conditioning strategies in the town of Mar Chiquita, Argentina. Anales De Investigación En Arquitectura, 14(2). https://doi.org/10.18861/ania.2024.14.2.3967

Issue

Section

Original papers

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.