Regulamentos internacionais sobre eficiência energética na construção

Análise comparativa das avaliações do envelope arquitetônico

Autores

DOI:

https://doi.org/10.18861/ania.2023.13.1.3369

Palavras-chave:

Análise comparativa, Envelope, Normas de eficiência energética, Metodologias de avaliação

Resumo

Os elementos que compõem o envelope arquitetônico em contato com o exterior representam um fator conclusivo no consumo de energia e têm uma influência direta na demanda de energia do edifício. Portanto, o objetivo do trabalho é analisar as diferentes formas de avaliação energética do envelope arquitetônico em padrões globais e detectar seus componentes representativos. A metodologia de pesquisa é um estudo teórico-descritivo, baseado em um mapeamento sistemático que permite a comparação entre as normas. As variáveis de análise e o tipo de informação contida nelas são então obtidas. Deduz-se que os aspectos mais importantes a considerar na concepção e avaliação do envelope são: a zona climática, presente em 34% das normas, a relação envidraçamento-opaco e a transmitância térmica, presente em 41% e 93% respectivamente. Ao comparar o escopo da regulamentação argentina com exemplos internacionais, conclui-se que é necessário reforçar os estudos e regulamentações relacionadas com a relação envidraçamento/vidrado.

Downloads

Não há dados estatísticos.

Referências

Ahmad, T., y Zhang, D. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports, 6, 1973–1991. https://doi.org/10.1016/J.EGYR.2020.07.020

Alwetaishi, M. (2019). Impact of glazing to wall ratio in various climatic regions: A case study. Journal of King Saud University - Engineering Sciences, 31(1), 6–18. https://doi.org/10.1016/j.jksues.2017.03.001

Andersen, M., Martini, I., y Díscoli, C. (2019). Clasificación y evaluación del sector residencial orientada a la aplicación masiva de estrategias de reciclado edilicio. AREA, 25(1), 1–24.

Ascione, F., Bianco, N., Maria Mauro, G., y Napolitano, D. F. (2019). Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones. Energy, 174, 359–374. https://doi.org/10.1016/j.energy.2019.02.182

Asdrubali, F., y Desideri, U. (2018). Handbook of Energy Efficiency in Buildings. A Life Cycle Approach. In Butterworth-Heinemann 2018 (Ed.), Handbook of Energy Efficiency in Buildings: A Life Cycle Approach. Elsevier. https://doi.org/10.1016/B978-0-12-812817-6.00002-4

Barbaresi, A., Bovo, M., y Torreggiani, D. (2020). The dual influence of the envelope on the thermal performance of conditioned and unconditioned buildings. Sustainable Cities and Society, 61. https://doi.org/10.1016/j.scs.2020.102298

Bensehla, S., Lazri, Y., y Mansouri, K. (2019). The analysis process in bioclimatic architectural design. International Seminar Sustainable Cities and Local Development, 01–07. https://www.researchgate.net/publication/344378409

BID. (2017). Eficiencia energética en América Latina y el Caribe: avances y oportunidades.

Blázquez, T., Ferrari, S., Suárez, R., y Sendra, J. J. (2019). Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat. Energy, 181, 504–520. https://doi.org/10.1016/j.energy.2019.05.160

Boutet, M. L., y Hernández, A. L. (2022). Validación de propuestas de optimización ambiental de un jardín de infantes de tipología compacta, en clima muy cálido-húmedo. Hábitat Sustentable, 12(1), 24–43. https://doi.org/10.22320/07190700.2022.12.01.02

Chiesa, G., Acquaviva, A., Grosso, M., Bottaccioli, L., Floridia, M., Pristeri, E., y Sanna, E. M. (2019). Parametric optimization of window-to-wall ratio for passive buildings adopting a scripting methodology to dynamic-energy simulation. Sustainability (Switzerland), 11(11). https://doi.org/10.3390/su11113078

Czajkowski, J. D., y Gómez, A. F. (2002). Diseño bioclimático y economía energética edilicia. Fundamentos y métodos: Vol. I (Universidad Nacional de La Plata, Ed.).

Foroushani, S., Bernhardt, R., y Bernhardt, M. (2022). On the use of the reference building approach in modern building energy codes. Energy and Buildings, 256. https://doi.org/10.1016/j.enbuild.2021.111726

Huynh, A., Dias Barkokebas, R., Al-Hussein, M., Cruz-Noguez, C., Chen, Y., y Donn, M. (2021). Energy-Efficiency Requirements for Residential Building Envelopes in Cold-Climate Regions. Atmosphere, 12(405). https://doi.org/10.3390/atmos12030405

IRAM. (2001). Norma IRAM 11604. Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en calefacción. Coeficiente volumétrico G de pérdidas de calor. Cálculo y valores límites.

IRAM. (2002a). Norma IRAM 11601. Aislamiento térmico de edificios. Métodos de cálculo.

IRAM. (2002b). Norma IRAM 11605. Acondicionamiento térmico de edificios. Condiciones de habitabilidad en edificios. Valores máximos de transmitancia térmica en cerramientos opacos.

IRAM. (2012). Norma IRAM 11603. Acondicionamiento térmico de edificios.

Jezierski, W., Sadowska, B., y Pawłowski, K. (2021). Impact of changes in the required thermal insulation of building envelope on energy demand, heating costs, emissions, and temperature in buildings. Energies, 14(1). https://doi.org/10.3390/en14010056

LETI. (2020). Climate Emergency Design Guide. https://www.leti.uk/cedg

Secretaría de agenda urbana y vivienda. (2020). ERESEE 2020. Estrategia a largo plazo para la rehabilitación energética en el sector de la edificación española. https://energy.ec.europa.eu/system/files/2020-06/es_ltrs_2020_0.pdf

Secretaría de vivienda. (2020). Vivienda Sustentable. Manual de ejecución.

Subramanian, S., Bastian, H., Hoffmeister, A., Jennings, B., Tolentino, C., Vaidyanathan, S., y Nadel, S. (2022). 2022 International Energy Efficiency Scorecard. www.aceee.org/research-report/i2201

Tushar, W., Lan, L., Withanage, C., En, H., Sng, K., Yuen, C., Wood, K. L., y Kumar, T. (2020). Exploiting design thinking to improve energy efficiency of buildings. Energy, 197, 117–141. https://doi.org/10.1016/j.energy.2020.117141

United Nations. (2022). The Sustainable Development Goals Report 2022. https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf

United Nations Development Programme. (2021). Types of climate and climate zones. https://climate-box.com/textbooks/the-problem-of-climate-change/2-2-effects-on-plants-and-animals/

Wong, L., y Krüger, E. (2017). Comparing energy efficiency labeling systems in the EU and Brazil: Implications, challenges, barriers and opportunities. Energy Policy, 109, 310–323. https://doi.org/10.1016/j.enpol.2017.07.005

Yusuf, A. (2020). Evaluation of bioclimatic principles in design of office building in hot-dry climate region of Nigeria. International Journal of Engineering Research and Technology, 9(4), 820–826. www.nachi.org

Publicado

2023-05-02

Como Citar

Michaux, C., Viegas, G. M., & Blasco Lucas, I. A. (2023). Regulamentos internacionais sobre eficiência energética na construção: Análise comparativa das avaliações do envelope arquitetônico. Anales De Investigación En Arquitectura, 13(1). https://doi.org/10.18861/ania.2023.13.1.3369

Edição

Seção

Artigos originais

Artigos Semelhantes

1 2 3 4 5 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.