Factores de abandono en la formación online
una revisión sistemática de literatura
DOI:
https://doi.org/10.18861/cied.2025.16.2.4117Palabras clave:
aprendizaje en línea, educación a distancia, deserción escolar, estudiantes en riesgo, sistemas de alerta temprana, apoyo estudiantil, inteligencia artificialResumen
La investigación analiza los factores que influyen en la deserción en la formación online entre 2020 y 2024, identificando tendencias y oportunidades para mejorar la retención mediante herramientas tecnológicas y modelos predictivos. Se realizó una revisión sistemática de la literatura utilizando el framework SALSA, revisando bases de datos como WoS, Scopus, ERIC, Dialnet y SciELO. Tras aplicar criterios de selección, se analizaron un total de 63 estudios mediante codificación cualitativa para identificar patrones temáticos. Los resultados destacan la incidencia de factores individuales como la autoeficacia, autorregulación y gestión del tiempo, así como aspectos sociodemográficos y del entorno, como responsabilidades laborales y familiares. A nivel institucional, elementos como el diseño pedagógico adaptado, soporte técnico e intervenciones personalizadas son clave para la retención. Además, herramientas como la analítica de aprendizaje y la inteligencia artificial emergen como estrategias esenciales para predecir y mitigar el abandono. Estas tecnologías permiten detectar patrones de comportamiento en plataformas virtuales y diseñar apoyos personalizados, en tiempo real, siendo efectivos para identificar estudiantes en riesgo. La investigación concluye que la adopción de estas herramientas y enfoques predictivos, basados en analítica de aprendizaje y estrategias adaptativas, es crucial para personalizar el aprendizaje y reducir la deserción en la educación en línea.
Descargas
Citas
Adamovich, K. A., & Chirkina, T. A. (2023). The Bullish Game: The Role of Virtual Currency in Incentivizing Homework on the Skyeng Platform. Educational Studies Moscow, (4). https://doi.org/10.17323/vo-2023-16640
Aldowah, H., Al-Samarraie, H., Alzahrani, A. I., & Alalwan, N. (2020). Factors affecting student dropout in MOOCs: A cause and effect decision‐making model. Journal of Computing in Higher Education, 32, 429–454. https://doi.org/10.1007/s12528-019-09241-y
Alrajhi, L., Alamri, A., Pereira, F. D., & Cristea, A. I. (2021). Urgency analysis of learners’ comments: An automated intervention priority model for MOOC. In A. I. Cristea & C. Troussas (Eds.), Intelligent Tutoring Systems. ITS 2021. Lecture Notes in Computer Science (Vol. 12677, pp. 148–160). Springer. https://doi.org/10.1007/978-3-030-80421-3_18
Bawa, P. (2016). Retention in online courses: Exploring issues and solutions--A literature review. Sage Open, 6(1). https://doi.org/10.1177/2158244015621777
Beasley, A. (2022). College students’ perceptions of the importance of student engagement in online courses [Doctoral dissertation, Walden University]. Walden University ScholarWorks. https://scholarworks.waldenu.edu/dissertations/13200/
Bozkurt, A., Jung, I., Xiao, J., Vladimirschi, V., Schuwer, R., Egorov, G., Lambert, S., Al-Freih, M., Pete, J., Olcott, D., Rodes, V., Aranciaga, I., Bali, M., Alvarez, A., Roberts, J., Pazurek, A., Raffaghelli, J. E., Panagiotou, N., Coëtlogon, P., … Paskevicius, M. (2020). A global outlook to the interruption of education due to COVID‑19 pandemic: Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education, 15(1), 1–126. https://doi.org/10.5281/zenodo.3878572
Brubacher, M. R., & Silinda, F. T. (2021). First-generation students in distance education program: Family resources and academic outcomes. The International Review of Research in Open and Distributed Learning, 22(1), 135–147. https://doi.org/10.19173/irrodl.v22i1.4872
Brunton, G., Oliver, S., & Thomas, J. (2020). Innovations in framework synthesis as a systematic review method. Research Synthesis Methods, 11(3), 316–330. https://doi.org/10.1002/jrsm.1399
Cabero Almenara, J. (2006). Bases pedagógicas del e-learning. Revista de Universidad y Sociedad del Conocimiento (RUSC), 3(1), 1–10. https://doi.org/10.7238/rusc.v3i1.265
Cabero Almenara, J. (2020). Tecnología educativa en tiempos de pandemia. Campus Virtuales, 9(2), 1–10. https://doi.org/10.54918/campusvirtuales.20200902.1
Codina, L. (2018). Revisiones bibliográficas sistematizadas: Procedimientos generales y framework para ciencias humanas y sociales [Tesis de maestría, Universitat Pompeu Fabra]. https://repositori.upf.edu/bitstream/handle/10230/34497/Codina_revisiones.pdf
Codina, L. (2020). Cómo hacer revisiones bibliográficas tradicionales o sistemáticas utilizando bases de datos académicas. Revista ORL, 11(2), 139–153. https://doi.org/10.14201/orl.22977
Cooke, E. M. (2023). If you think you can or can’t, you’re right: A study of college student self-efficacy building through the UCSB Promise Scholars Program [Doctoral dissertation, Fielding Graduate University].
Cristea, A. I., Alamri, A., Alshehri, M., Pereira, F. D., Toda, A. M., de Oliveira, E. H. T., & Stewart, C. (2024). The engage taxonomy: SDT-based measurable engagement indicators for MOOCs and their evaluation. User Modeling and User-Adapted Interaction, 34, 323–374. https://doi.org/10.1007/s11257-023-09374-x
Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020). Explaining Chinese university students’ continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers & Education, 150, 103850. https://doi.org/10.1016/j.compedu.2020.103850
De la Peña, D., Lizcano, D., & Martínez-Álvarez, I. (2021). Learning through play: Gamification model in university-level distance learning. Entertainment Computing, 39, 100430. https://doi.org/10.1016/j.entcom.2021.100430
De Silva, D. V. M. (2020). Developing self-regulated learning skills in university students studying in the open and distance learning environment by using KWL method. Journal of Learning for Development, 7(2), 204–217. https://doi.org/10.56059/jl4d.v7i2.389
Del Peral Pérez, J. J., & Castrillo de Larreta-Azelain, M. D. (2023). Empowering teachers in LMOOC design by using a taxonomy of participants’ temporal patterns. Journal of Research in Applied Linguistics, 14(2), 116–134. https://doi.org/10.22055/RALS.2023.43579.3048
Dogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). The use of artificial intelligence (AI) in online learning and distance education processes: A systematic review of empirical studies. Applied Sciences, 13(5), 3056. https://doi.org/10.3390/app13053056
Estrada-Molina, O., & Fuentes-Cancell, D.-R. (2022). Engagement and desertion in MOOCs: A systematic review. Comunicar, 30(70), 111–124. https://doi.org/10.3916/C70-2022-09
Feng, W., Tang, J., & Liu, T. X. (2019). Understanding dropouts in MOOCs. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 517–524. https://doi.org/10.1609/aaai.v33i01.3301517
Garrison, D. R., Anderson, T., & Archer, W. (2000). Critical inquiry in a text-based environment: Computer conferencing in higher education. The Internet and Higher Education, 2(2–3), 87–105. https://doi.org/10.1016/S1096-7516(00)00016-6
García Aretio, L. (2014). La educación a distancia: De la teoría a la práctica. Universidad Nacional de Educación a Distancia (UNED).
Garg, M., & Goel, A. (2021). A data-driven approach for peer recommendation to reduce dropouts in MOOC. In S. M. Thampi, E. Gelenbe, M. Atiquzzaman, V. Chaudhary & K. Li (Eds.), Advances in computing and network communications. Lecture Notes in Electrical Engineering (Vol. 735, pp. 217–229). Springer. https://doi.org/10.1007/978-981-33-6977-1_18
Ginting, D., Woods, R., Tantri, N. R., Rahayu, P. S., & Asfihana, R. (2022). Portraying the performance of Indonesian’s massive open online course facilitators. Sage Open, 12(3), 1–10. https://doi.org/10.1177/21582440221116601
Gómez, A., Marco-Galindo, M. J., & Minguillón, J. (2023). Evaluation of an intervention on activity planning in CS1. IEEE Revista Iberoamericana de Tecnologías del Aprendizaje, 18(3), 287–294. https://doi.org/10.1109/RITA.2023.3302174
Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Greene, M. D. (2023). Self-efficacy, locus of control, and their effect on online returning students’ graduation [Doctoral dissertation, Brigham Young University]. BYU ScholarsArchive. https://scholarsarchive.byu.edu/etd/10216/
Greenland, S. J., & Moore, C. (2022). Large qualitative sample and thematic analysis to redefine student dropout and retention strategy in open online education. British Journal of Educational Technology, 53(3), 647–667. https://doi.org/10.1111/bjet.13173
Guerrero-Roldán, A. E., Rodríguez-González, M. E., Bañeres, D., Elasri-Ejjaberi, A., & Cortadas, P. (2021). Experiences in the use of an adaptive intelligent system to enhance online learners’ performance: A case study in economics and business courses. International Journal of Educational Technology in Higher Education, 18. https://doi.org/10.1186/s41239-021-00271-0
Gündüz, M., & Karaman, S. (2020). Open Education Faculty and distance education students’ dropout reasons: The case of a Turkish state university. Open Praxis, 12(1), 7. https://doi.org/10.5944/openpraxis.12.1.970
Guzmán Rincón, A., Sotomayor Soloaga, P. A., Carrillo Barbosa, R. L., & Barragán-Moreno, S. P. (2024). Satisfaction with the institution as a predictor of the intention to drop out in online higher education. Cogent Education, 11(1). https://doi.org/10.1080/2331186X.2024.2351282
Ilić, M., Mikić, V., Kopanja, L., & Vesin, B. (2023). Intelligent techniques in e-learning: A literature review. Artificial Intelligence Review, 56(12), 14907–14953. https://doi.org/10.1007/s10462-023-10508-1
Jordan, K. (2014). Initial trends in enrolment and completion of massive open online courses. The International Review of Research in Open and Distributed Learning, 15(1). https://doi.org/10.19173/irrodl.v15i1.1651
Kara, M., Erdoğdu, F., Kokoç, M., & Cagiltay, K. (2019). Challenges faced by adult learners in online distance education: A literature review. Open Praxis, 11(1), 5. https://doi.org/10.5944/openpraxis.11.1.929
Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning. Research in Learning Technology, 23. https://doi.org/10.3402/rlt.v23.26507
Kim, S., & Park, T. (2022). Analyzing log data of students who have achieved scores adjacent to the minimum passing grade for a K-MOOC completion in the context of learning analytics. Sustainability, 14(18), 11136. https://doi.org/10.3390/su141811136
Kokoç, M., Akçapınar, G., & Nehal Hasnine, M. (2021). Unfolding students’ online assignment submission behavioral patterns using temporal learning analytics. Educational Technology & Society, 24(1), 223–235.
Kurtz, G., Kopolovich, O., Segev, E., Sahar-Inbar, L., Gal, L., & Hammer, R. (2022). Impact of an instructor’s personalized email intervention on completion rates in a massive open online course (MOOC). Electronic Journal of E-Learning, 20(3), 325–335. https://doi.org/10.34190/ejel.20.3.2376
le Roux, S. G. (2024). Juggling access vs retention and academic performance: The experience of a lecturer teaching in an open, distance e-learning institution. South African Journal of Higher Education, 38(2), 176–195. https://doi.org/10.20853/38-2-5761
Liu, S., & Hamam, M. (2023). Online crisis learning alert and intervention based on OU Analyse. In J. H. Abawajy, Z. Xu, M. Atiquzzaman & X. Zhang (Eds.), Tenth International Conference on Applications and Techniques in Cyber Intelligence (ICATCI 2022) (pp. 555–563). Springer. https://doi.org/10.1007/978-3-031-28893-7_66
López-Zambrano, J., Lara Torralbo, J., & Romero, C. (2021). Early prediction of student learning performance through data mining: A systematic review. Psicothema, 33(3), 456–465. https://doi.org/10.7334/psicothema2021.62
Luis, R. M. M. F., Llamas-Nistal, M., & Iglesias, M. J. F. (2022). On the introduction of intelligent alerting systems to reduce e-learning dropout: A case study. Smart Learning Environments, 9. https://doi.org/10.1186/s40561-022-00210-0
Lychuk, M., Bilous, N., Isaienko, S., Gritsyak, L., & Nozhovnik, O. (2021). Smart automated language teaching through the Smart Sender platform. European Journal of Educational Research, 10(2), 841–854. https://doi.org/10.12973/eu-jer.10.2.841
Madera Fernández, B. E., & Uc Rios, C. A. (2024). Competencias digitales docentes y su relación con la deserción universitaria. Contribuciones a la Economía, 22(1), 16–33. https://doi.org/10.51896/ce.v22i1.373
Martínez-Carrascal, J. A., Hlosta, M., & Sancho-Vinuesa, T. (2023). Using survival analysis to identify populations of learners at risk of withdrawal: Conceptualization and impact of demographics. The International Review of Research in Open and Distributed Learning, 24(1), 1–21. https://doi.org/10.19173/irrodl.v24i1.6589
Mbunge, E., Fashoto, S., Mafumbate, R., & Nxumalo, S. (2022). Diverging hybrid and deep learning models into predicting students’ performance in smart learning environments – A review. In T. M. N. Ngatched & I. Woungang (Eds.), Pan-African Artificial Intelligence and Smart Systems. PAAISS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 405, pp. 182–202). Springer. https://doi.org/10.1007/978-3-030-93314-2_12
McCarthy, S., Rowan, W., Kahma, N., Lynch, L., & Ertiö, T. P. (2021). Open e-learning platforms and the design–reality gap: An affordance theory perspective. Information Technology & People, 35(8), 74–98. https://doi.org/10.1108/ITP-06-2021-0501
Mourali, Y., Agrebi, M., Farhat, R., Ezzedine, H., & Jemni, M. (2021). Learning analytics metrics into online course’s critical success factors. In Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, & A. M. Ramalho Correia (Eds.), Trends and applications in information systems and technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing (Vol. 1366, pp. 161–170). Springer. https://doi.org/10.1007/978-3-030-72651-5_16
Muljana, P. S., & Luo, T. (2019). Factors contributing to student retention in online learning and recommended strategies for improvement: A systematic literature review. Journal of Information Technology Education: Research, 18, 19–57. https://doi.org/10.28945/4182
Murtaza, M., Ahmed, Y., Shamsi, J. A., Sherwani, F., & Usman, M. (2022). AI-based personalized e-learning systems: Issues, challenges, and solutions. IEEE Access, 10, 81323–81342. https://doi.org/10.1109/ACCESS.2022.3193938
Olugbara, C. T., Letseka, M., & Akintolu, M. (2023). Student support as a panacea for enhancing student success in an open distance learning environment. Journal of Educators Online, 20(3). https://doi.org/10.9743/JEO.2023.20.3.9
Orellana, D., Segovia, N., & Rodríguez Cánovas, B. (2020). El abandono estudiantil en programas de educación superior virtual: Revisión de literatura. Revista de la Educación Superior, 49(194), 47–64.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372(71). https://doi.org/10.1136/bmj.n71
Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep knowledge tracing. Advances in Neural Information Processing Systems, 28, 505–513.
Pino, K. R. (2023). Improving the quality of academic advisors’ practices to aid distance learners’ retention [Doctoral dissertation, Nova Southeastern University]. NSUWorks.
Prohny, J. P., Roxo‐Gonçalves, M., Wagner, V. P., Corrêa, A. P. B., Martins, M. A. T., Martins, M. D., Carvalho, F., Gonçalves, M. R., & Carrard, V. C. (2024). Social networking website increases efficacy and engagement in a distance learning course about oral lesions. Journal of Dental Education, 88(2), 149–156. https://doi.org/10.1002/jdd.13402
Qazdar, A., Hasidi, O., Qassimi, S., & Abdelwahed, E. H. (2023). Newly proposed student performance indicators based on learning analytics for continuous monitoring in learning management systems. International Journal of Online and Biomedical Engineering (IJOE), 19(11), 19–30. https://doi.org/10.3991/ijoe.v19i11.39471
Racchumí-Vela, A., Sanchez, L., & Quispe-Juli, C. U. (2024). Deserción de un curso en línea de estadística aplicada a la investigación en salud. Investigación en Educación Médica, 13(51), 33–41.
Ramírez Montoya, M. S., McGreal, R., & Obiageli Agbu, J.-F. (2022). Horizontes digitales complejos en el futuro de la educación 4.0: Luces desde las recomendaciones de UNESCO. RIED-Revista Iberoamericana de Educación a Distancia, 25(2), 9–21. https://doi.org/10.5944/ried.25.2.33843
Rodríguez, M. E., Guerrero-Roldán, A. E., Baneres, D., & Karadeniz, A. (2022). An intelligent nudging system to guide online learners. The International Review of Research in Open and Distributed Learning, 23(1), 41–62. https://doi.org/10.19173/irrodl.v22i4.5407
Romero Alonso, R. E., & Anzola Vera, J. J. (2022). Modelo para la progresión académica de estudiantes online en Educación Superior. Cuadernos de Investigación Educativa, 13(1). https://doi.org/10.18861/cied.2022.13.1.3181
Rotar, O. (2022). Online student support: A framework for embedding support interventions into the online learning cycle. Research and Practice in Technology Enhanced Learning, 17. https://doi.org/10.1186/s41039-021-00178-4
Saldaña, J. (2013). The coding manual for qualitative researchers (2nd ed.). SAGE Publications.
Saltos-Rivas, R., Novoa-Hernández, P., & Serrano Rodríguez, R. (2022). How reliable and valid are the evaluations of digital competence in higher education: A systematic mapping study. Sage Open, 12(1). https://doi.org/10.1177/21582440211068492
Schnieders, E., Röhr, F., Mbewe, M., Shanzi, A., Berner-Rodoreda, A., Barteit, S., Louis, V. R., Andreadis, P., Syakantu, G., & Neuhann, F. (2022). Real-life evaluation of an interactive versus noninteractive e-learning module on chronic obstructive pulmonary disease for medical licentiate students in Zambia: Web-based, mixed methods randomized controlled trial. JMIR Medical Education, 8(1). https://doi.org/10.2196/34751
Segovia-García, N., Said-Hung, E., & García Aguilera, F. J. (2022). Educación superior virtual en Colombia: Factores asociados al abandono. Educación XX1, 25(1), 197–218. https://doi.org/10.5944/educxx1.30455
Semenova, T. (2022). Not only the intention to complete: The role of action-oriented intentions in MOOC completion. Technology, Knowledge and Learning, 27, 707–719. https://doi.org/10.1007/s10758-021-09534-1
Seo, J. T., Park, B. N., Kim, Y. G., & Yeon, K. W. (2023). Predictive analysis of sports education students’ dropout in the Distance Learning Centre. Revista de Psicología del Deporte, 34(4), 403–414.
Shabbir, S., Ayub, M. A., Khan, F. A., & Davis, J. (2021). Short-term and long-term learners’ motivation modeling in web-based educational systems. Interactive Technology and Smart Education, 18(4), 535–552. https://doi.org/10.1108/ITSE-09-2020-0207
Shang, S., Yi, T., & Lyv, W. (2024). Effects of learners’ course network characteristics on continuous online learning: Moderation roles of social learning and social exposure. Asia Pacific Education Review. https://doi.org/10.1007/s12564-024-09975-0
Shikulo, L., & Lekhetho, M. (2020). Exploring student support services of a distance learning centre at a Namibian university. Cogent Social Sciences, 6(1). https://doi.org/10.1080/23311886.2020.1737401
Siksnelyte-Butkiene, I., Streimikiene, D., Lekavicius, V., & Balezentis, T. (2021). Energy poverty indicators: A systematic literature review and comprehensive analysis of integrity. Sustainable Cities and Society, 67, 102756. https://doi.org/10.1016/j.scs.2021.102756
Souai, W., Mihoub, A., Tarhouni, M., Zidi, S., Krichen, M., & Mahfoudhi, S. (2022). Predicting at-risk students using the deep learning BLSTM approach. 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), 32–37. https://doi.org/10.1109/SMARTTECH54121.2022.00022
Soukaina, S., El Miloud, S., Azzouzi, S., & My El Hassan, C. (2020). Quality approach to analyze the causes of failures in MOOC. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), 1–5. https://doi.org/10.1109/CloudTech49835.2020.9365904
Stephen, J. S., & Rockinson-Szapkiw, A. J. (2021). A high-impact practice for online students: The use of a first-semester seminar course to promote self-regulation, self-direction, online learning self-efficacy. Smart Learning Environments, 8. https://doi.org/10.1186/s40561-021-00151-0
Stern, C., Lizarondo, L., Carrier, J., Godfrey, C., Rieger, K., Salmond, S., Apostolo, J., Kirkpatrick, P., & Loveday, H. (2021). Methodological guidance for the conduct of mixed methods systematic reviews. JBI Evidence Implementation, 19(2), 120–129. https://doi.org/10.1097/XEB.0000000000000282
Sun, D., Li, T., You, F., Hu, M., & Li, Z. (2021). Prediction of learning behavior characters of MOOC’s data based on time series analysis. Journal of Physics: Conference Series, 1994(1). https://doi.org/10.1088/1742-6596/1994/1/012009
Sylla, K., Ndiaye, N. M., Ouya, S., & Mendy, G. (2020). Towards the use of a contact center for the socialization and capacity reinforcement of learners of African digital universities. 2020 22nd International Conference on Advanced Communication Technology (ICACT), 603–607. https://doi.org/10.23919/ICACT48636.2020.9061548
Tan, M., & Shao, P. (2015). Prediction of student dropout in e-learning program through the use of machine learning method. International Journal of Emerging Technologies in Learning (IJET), 10, 11–17. https://doi.org/10.3991/ijet.v10i1.4189
Utamachant, P., Anutariya, C., & Pongnumkul, S. (2023). i-Ntervene: Applying an evidence-based learning analytics intervention to support computer programming instruction. Smart Learning Environments, 10. https://doi.org/10.1186/s40561-023-00257-7
Waheed, H., Nisar, I., Khalid, M.-N., Shahid, A., Aljohani, N. R., Hassan, S. U., & Nawaz, R. (2023). Predicting academic performance of students from the assessment submission in virtual learning environment. In A. Visvizi, O. Troisi & M. Grimaldi (Eds.), Research and Innovation Forum 2022. RIIFORUM 2022. Springer Proceedings in Complexity (pp. 417–424). Springer. https://doi.org/10.1007/978-3-031-19560-0_33
Wakjira, A., & Bhattacharya, S. (2021). Predicting student engagement in the online learning environment. International Journal of Web-Based Learning and Teaching Technologies, 16(6), 1–21. https://doi.org/10.4018/IJWLTT.287095
Wang, C., Chang, L., & Liu, T. (2022). Predicting student performance in online learning using a highly efficient gradient boosting decision tree. In Z. Shi, J. Zucker & B. An (Eds.), Intelligent Information Processing XI. IIP 2022. IFIP Advances in Information and Communication Technology (pp. 508–521). Springer. https://doi.org/10.1007/978-3-031-03948-5_41
Wu, F., Zhang, J., Shi, Y., Yang, X., Song, W., & Peng, Z. (2020). Predicting MOOCs dropout with a deep model. In H. Zhisheng, B. Wouter, W. Hua, Z. Rui & Z. Yanchun (Eds.), Web Information Systems Engineering – WISE 2020 (pp. 488–502). Springer. https://doi.org/10.1007/978-3-030-62008-0_34
Wu, M., & Tang, T. (2022). Application of random trees model in online learning perspective in evaluating learners’ behavioral engagement. Mobile Information Systems, 2022, 1–9. https://doi.org/10.1155/2022/8155902
Xavier, M., Meneses, J., & Fiuza, P. J. (2022). Dropout, stopout, and time challenges in open online higher education: A qualitative study of the first-year student experience. Open Learning: The Journal of Open, Distance and e-Learning, 1–17. https://doi.org/10.1080/02680513.2022.2160236
Xia, X., & Qi, W. (2024a). Driving STEM learning effectiveness: Dropout prediction and intervention in MOOCs based on one novel behavioral data analysis approach. Humanities and Social Sciences Communications, 11, Article 430. https://doi.org/10.1057/s41599-024-02882-0
Xia, X., & Qi, W. (2024b). The construction of knowledge graphs based on associated STEM concepts in MOOCs and its guidance for sustainable learning behaviors. Education and Information Technologies, 29, 20757–20794. https://doi.org/10.1007/s10639-024-12653-8
Yang, Y., Wen, Z., Cao, J., Shen, J., Yin, H., & Zhou, X. (2020). EPARS: Early prediction of at-risk students with online and offline learning behaviors. In Y. Nah, B. Cui, S. Lee, J. X. Yu, Y. S. Moon & S. E. Whang (Eds.), Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science (pp. 3–19). Springer. https://doi.org/10.1007/978-3-030-59416-9_1
Zhang, J., Gao, M., & Zhang, J. (2021). The learning behaviours of dropouts in MOOCs: A collective attention network perspective. Computers & Education, 167, 104189. https://doi.org/10.1016/j.compedu.2021.104189
Zhang, J., Qiu, F., Wu, W., Wang, J., Li, R., Guan, M., & Huang, J. (2023). E-learning behavior categories and influencing factors of STEM courses: A case study of the Open University Learning Analysis Dataset (OULAD). Sustainability, 15(10), 8235. https://doi.org/10.3390/su15108235
Zheng, L. (2024). Intelligent language acquisition model for online student interaction with educators using 6G-cyber enhanced wireless network. Wireless Personal Communications. https://doi.org/10.1007/s11277-024-11197-x
Zhou, Y., Zhao, J., & Zhang, J. (2020). Prediction of learners’ dropout in e-learning based on the unusual behaviors. Interactive Learning Environments, 31(3), 1796–1820. https://doi.org/10.1080/10494820.2020.1857788
Zou, D., Xie, H., & Wang, F. L. (2018). Future trends and research issues of technology-enhanced language learning: A technological perspective. Knowledge Management & E-Learning: An International Journal, 10(4), 426–440. https://doi.org/10.34105/j.kmel.2018.10.026
Zuhairi, A., Karthikeyan, N., & Priyadarshana, S. T. (2019). Supporting students to succeed in open and distance learning in the Open University of Sri Lanka and Universitas Terbuka Indonesia. Asian Association of Open Universities Journal, 15(1), 13–35. https://doi.org/10.1108/AAOUJ-09-2019-0038