The collaborative discourse in the classroom

analysis of eight paradigmatic articles

Authors

DOI:

https://doi.org/10.18861/cied.2024.15.2.3827

Keywords:

collaborative learning, collaborative interaction, collaborative discourse analysis, literature review, interaction analysis

Abstract

In the educational context, the traditional teaching discourse, or vertical discourse from teacher to student, has been extensively studied. However, nowadays, collaborative learning has gained more relevance. Initially, research on collaborative learning focused on exploring the results and effects of collaboration. However, later studies identified the need to analyze the collaborative work process. The methodological analysis presents challenges due to its complexity. Various methodologies have been proposed in this sense, ranging from qualitative approaches (textual data analysis) to systematic approaches based on analytical categories (categorized data analysis). Recognizing these methodologies is crucial to improving understanding and advancing towards more effective analytical tools (Campbell, 2021; Leguizamón et al., 2020). Therefore, this article aims to conduct a literature review on different methodologies for analyzing collaborative discourse, considering paradigmatic cases that represent the variety of existing methodological approaches. For this, a panoramic literature review of the last ten years was conducted in the databases SciELO, Redalyc, ERIC, and Scopus. Empirical studies analyzing verbal interactions in collaborative contexts, both face-to-face and virtual, synchronous and asynchronous, were included. From the total of recovered articles, eight particular cases are analyzed in this review, those that can be considered paradigmatic of the indicated types. The obtained results show a wide variety of methodologies available to analyze collaborative discourse. This methodological diversity not only enriches the research by providing multiple approaches but also allows researchers to validate their results using different methods.

Downloads

Download data is not yet available.

References

Aguirre, J. L. (2011). Introducción al Análisis de Redes Sociales. Centro Interdisciplinario para el Estudio de Políticas Públicas.

Arana, C. (2021). Redes Neuronales Recurrentes: Análisis de los modelos especializados en datos secuenciales. UCEMA.

Baker, M. J. (2010, setiembre 2-3). Approaches to understanding students’ dialogues: articulating multiple modes of interpretation [Conferencia Magistral]. EARLI SIG 1, Jena, Alemania.

Bloome, D., Carter, S. P., Christian, B. M., Otto, S., & Shuart-Faris, N. (2005). Discourse analysis and the study of classroom language and literacy events: A microethnographic perspective. Lawrence Erlbaum Associates.

Bologna, E. (2011). Estadística para Psicología y Educación. Editorial Brujas.

Campbell, T. G. (2021). An examination of discourse analytic methods in the context of mathematical group work. International Journal of Mathematical Education in Science and Technology, 53(12), 1–24. https://doi.org/10.1080/0020739x.2021.1944681

Cárcamo Morales, B. (2018). El análisis del discurso multimodal: una comparación de propuestas metodológicas. Forma y Función, 31(2), 145-174. https://doi.org/10.15446/fyf.v31n2.74660

Cardoni, J., & Roselli, N. D. (2023). Propuesta de un modelo analítico de artículos de aprendizaje colaborativo a nivel universitario publicados en los últimos cinco años. Propósitos y Representaciones, 11(2). https://doi.org/10.20511/pyr2023.v11n2.1828

Carranza, G. (2008). Docencia, discurso y evaluación colaborativa. Reencuentro, 53, 135-45.

Castellanos Ramírez, J. C., & Onrubia Goñi, J. (2016). La importancia de los procesos de regulación compartida en CSCL; rasgos teóricos y empíricos para su estudio. Revista Iberoamericana De Educación, 70(1), 29–46. https://doi.org/10.35362/rie70171

Castellaro, M., Peralta, N. S., & Curcio, J. M. (2020). Estudio secuencial de la interacción sociocognitiva durante la resolución de problemas lógicos. CES Psicología, 13(1), 1-17. https://doi.org/10.21615/cesp.13.1.1

Coll, C., & Sánchez, E. (2008). Presentación. El análisis de la interacción alumno-profesor: líneas de investigación. Revista de Educación, 346, 15-31.

Csanadi, A., Eagan, B., Kollar, I., Shaffer, D. W., & Fischer, F. (2018). When coding-and-counting isn’t enough: using epistemic network analysisi (ENA) to analyze verbal data in CSCL research. International Journal of Computer-Supported Collaborative Learning, 13(4), 419- 438. https://doi.org/10.1007/s11412-018-9292-z

De la Fuente Fernández, S. (2011). Análisis conglomerados. Universidad Autónoma de Madrid.

Escudero, C. (2020). El análisis temático como herramienta de investigación en el área de la comunicación social: contribuciones y limitaciones. La Trama de la Comunicación, 24(2), 89-100.

González de Cossío, M., & Lema, R. (2016). Análisis conversacional como método de evaluación de los mensajes gráficos. Razón y Palabra, 20(95), 629-658.

González-Teruel, A. (2015). Estrategias metodológicas para la investigación del usuario en los medios sociales: análisis de contenido, teoría fundamentada y análisis del discurso. Profesional De La información, 24(3), 321–328. https://doi.org/10.3145/epi.2015.may.12

Guirao Goris, S. J. A. (2015). Utilidad y tipos de revisión bibliográfica. Ene, 9(2). https://dx.doi.org/10.4321/S1988-348X2015000200002

Hoppe, H. U., Doberstein, D., & Hecking, T. (2021). Using sequence analysis to determine the well-functioning of small groups in large online courses. International Journal of Artificial Intelligence in Education, 31, 680–699. https://doi.org/10.1007/s40593-020-00229-9

King, N. (2004). Using yemplates in the thematic analysis of text. En C. Cassell & G. Symon (Eds.), Essential guide to qualitative methods in organizational research (pp. 256–270). Sage.

Leguizamón, R., Rondini, M., Castellaro, M., & Peralta, N. S. (2020). Clasificación y descripción de sistemas categoriales sobre interacción sociocognitiva entre pares. Propósitos y Representaciones, 8(2). http://dx.doi.org/10.20511/pyr2020.v8n2.556

Leupen, S. M., Kephart, K. L., & Hodges, L. C. (2020). Factors influencing quality of team discussion: discourse analysisi in an undergraduate team-based learning biology course. Life Sciences Education, 19(7), 1-13. https://doi.org/10.1187/cbe.19-06-0112

Molinero, L. M. (2002). Análisis de la covarianza. Asociación de la Sociedad Española de Hipertensión.

Morguen, N., Castellaro, M., & Peralta, N. S. (2019). Modalidades de razonamiento en díadas durante la resolución de problemas lógicos. Psicogente, 23(43), 1-28. https://doi.org/10.17081/psico.23.43.3092

Nolasco, A. (2020). Análisis de datos continuos: modelos de análisis de la varianza y de la covarianza. Universidad de Alicante.

Olsen, J. K., Sharma, K., Nikol, R., & Aleven, V. (2020). Temporal analysis of multimodal data to predict collaborative learning outcomes. British Journal of Educational Technology, 51(5), 1527-1547. https://doi.org/10.1111/bjet.12982

Ouyang, F., & Dai, X. (2022). Using a three-layered social-cognitive network analysis framework for undertanding online collaborative discussions. Australasian Journal of Educational Technology, 38(1), 164–181. https://doi.org/10.14742/ajet.7166

Peralta, N. S., & Roselli, N. (2021). Efectos de la regulación de la interacción diádica en tareas argumentativas. Revista De Psicología, 39(1), 207-227. https://doi.org/10.18800/psico.202101.009

Roselli, N. D. (2016). El aprendizaje colaborativo: bases teóricas y estrategias aplicables en la enseñanza universitaria. Propósitos y Representaciones, 4(1), 219-280. http://dx.doi.org/10.20511/pyr2016.v4n1.90

Ruiz Ruiz, J. (2009). Análisis sociológico del discurso: métodos y lógicas. Forum: Qualitative Social Research, 10(2). http://hdl.handle.net/10261/64955

Scott, C. L. (2015). El futuro del aprendizaje 2. ¿Qué tipo de aprendizaje se necesita en el siglo XXI? UNESCO.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Sage.

Urra, E., Muñoz, A., & Peña, J. (2013). El análisis del discurso como perspectiva metodológica para investigadores de salud. Enfermería Universitaria, 10(2).

Wieselmann, J. R., Keratithamkul, K., Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2020). Discourse analysis in integrated STEM activities: Methods for examining power and positioning in small group interactions. Research in Science Education, 51, 113-133. https://doi.org/10.1007/s11165-020-09950-w

Zakaria, Z., Vandenberg, J., Tsan, J., Cadieux Boulden, D., Lynch, C. F., Boyer, K. E., & Eric, N. W. (2021). Two-computer pair programming: Exploring a feedback intervention to improve collaborative talk in elementary students. Computer Science Education, 32(1), 3-29. https://doi.org/10.1080/08993408.2021.1877987

Zheng, L., Long, M., Niu, J., & Zhong, L. (2023). An automated group learning engagement analysis and feedback approach to promoting collaborative knowledge building, group performance, and socially shared regulation in CSCL. International Journal of Computer-Supported Collaborative Learning, 18, 101–133. https://doi.org/10.1007/s11412-023-09386-0

Zheng, L. (2017). Knowledge building and regulation in computer-supported collaborative learning. Springer.

Published

2024-11-06

How to Cite

Cardoni, J., Roselli, N. D., & García Ripa, M. I. (2024). The collaborative discourse in the classroom: analysis of eight paradigmatic articles. Cuadernos De Investigación Educativa, 15(2). https://doi.org/10.18861/cied.2024.15.2.3827

Issue

Section

Articles