Meta-analysis of the Effect of the Integration of Immersive Technologies on Learning in Primary Education

Authors

DOI:

https://doi.org/10.18861/cied.2025.16.2.4052

Keywords:

augmented reality, virtual reality, learning, academic achievement, primary education

Abstract

Immersive technologies such as augmented reality and virtual reality have progressively gained research interest in education. Although they have been around for a few decades, their integration into classrooms has recently become feasible due to the decrease in associated costs and the development of high-quality displays. To determine the effect of immersive technologies on academic achievement, this study conducted a meta-analysis, following PRISMA statement guidelines for the article search and using the MAJOR module of the JAMOVI software for data analysis. The search was performed in the Web of Science, Scopus, and ERIC databases, covering the period between 2018 and 2023. The sample consisted of 18 articles that met the established inclusion criteria. The results show significantly higher learning when immersive technologies are integrated, as opposed to traditional strategies. Future research should examine the effect of technologies on attitudes towards learning, emotions, academic engagement, and 21st century skills.

Downloads

Download data is not yet available.

References

Abdullah, N., Baskaran, V. L., Mustafa, Z., Ali, S. R., & Zaini, S. H. (2022). Augmented reality: the effect in students’ achievement, satisfaction, and interest in science education. International Journal of Learning, Teaching and Educational Research, 21(5), 326-350. https://doi.org/10.26803/ijlter.21.5.17

Acar, A., & Cavas, B. (2020). The effect of virtual reality enhanced learning environment on the 7th-grade students’ reading and writing skills in english. Mojes: Malaysian Online Journal of Educational Sciences, 8(4), 22-33.

Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11. https://doi.org/10.1016/j.edurev.2016.11.002

Aldossari, S., & Alsuhaibani, Z. (2021). Using augmented reality in language classrooms: the case of EFL elementary students. Advances in Language and Literary Studies, 12(6), 1-8.

Alqarni, T. (2021). Comparison of augmented reality and conventional teaching on special needs students’ attitudes towards science and their learning outcomes. Journal of Baltic Science Education, 20(4), 558-572.

Altinpulluk, H. (2019). Determining the trends of using augmented reality in education between 2006-2016. Education and Information Technologies, 24, 1089-1114. https://doi.org/10.1007/s10639-018-9806-3

Baba, A., Zorlu, Y., & Zorlu, F. (2022). Investigation of the effectiveness of augmented reality and modeling-based teaching in "Solar System and Eclipses" unit. International Journal of Contemporary Educational Research, 9(2), 283-298. https://doi.org/10.33200/ijcer.1040095

Binhomran, K., & Altalhab, S. (2021). The impact of implementing augmented reality to enhance the vocabulary of young EFL learners. JALT CALL Journal, 17(1), 23-44. https://doi.org/10.29140/jaltcall.v17n1.304

Buchner, J., & Kerres, M. (2023) Media comparison studies dominate comparative research on augmented reality in education. Computers & Education, 195, 104711. https://doi.org/10.1016/j.compedu.2022.104711

Cabero-Almenara, J., Valencia-Ortiz, R., & Llorente-Cejudo, C. (2022). Ecosistema de tecnologías emergentes: realidad aumentada, virtual y mixta. Tecnología, Ciencia y Educación, (23), 7-22. https://doi.org/10.51302/tce.2022.1148

Cao, W., & Yu, Z. (2023). The impact of augmented reality on student attitudes, motivation, and learning achievements—a meta-analysis (2016–2023). Humanities and Social Sciences Communications, 10, 352 https://doi.org/10.1057/s41599-023-01852-2

Chang, H. Y., Binali, T., Liang, J. C., Chiou, G. L., Cheng, K. H., Lee, S. W. Y., & Tsai, C. C. (2022). Ten years of augmented reality in education: A meta-analysis of (quasi-) experimental studies to investigate the impact. Computers & Education, 191, 104641. https://doi.org/10.1016/j.compedu.2022.104641

Chen, C. C., Chen, H. R., & Wang, T. Y. (2022). Creative situated augmented reality learning for astronomy curricula. Educational Technology & Society, 25(2), 148-162.

Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review, 36, 100452. https://doi.org/10.1016/j.edurev.2022.100452

Coşkun, M., & Koç, Y. (2021). The effect of augmented reality and mobile application supported instruction related to different variables in 7th grade science lesson. Psycho-Educational Research Reviews, 10(2), 298-313. https://doi.org/10.52963/PERR_Biruni_V10.N2.21

Demircioglu, T., Karakus, M., & Ucar, S. (2022). The impact of augmented reality-based argumentation activities on middle school students’ academic achievement and motivation in science classes. Education Quarterly Reviews, 5(2), 22-34. https://doi.org/10.31014/aior.1993.05.02.464

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629-634. https://doi.org/10.1136/bmj.315.7109.629

Erikson, E. H. (1985). El Ciclo vital completado. Paidós.

Fau, C., & Nabzo, S. (2020). Metaanálisis: bases conceptuales, análisis e interpretación estadística. Revista Mexicana de Oftalmología, 94(6), 260-273.

Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23, 447-459. https://doi.org/10.1007/s10055-019-00379-9

Guo, Q., Zhang, L., Gui, C., Chen, G., Chen, Y., Tan, H., Su, W., Zhang, R., & Gao, Q. (2023). Virtual reality intervention for patients with neck pain: systematic review and meta-analysis of randomized controlled trials. Journal of Medical Internet Research, 25, e38256. https://doi.org/10.2196/38256

Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8(1), 1-32. https://doi.org/10.1007/s40692-020-00169-2

Hashim, N. C., Abd Majid, N. A., Arshad, H., Hashim, H., & Alyasseri, Z. A. A. (2022). Mobile augmented reality based on multimodal inputs for experiential learning. IEEE Access, 10, 78953-78969. https://doi.org/10.1109/ACCESS.2022.3193498

Hsieh, M. C. (2021). Development and application of an augmented reality oyster learning system for primary marine education. Electronics, 10(22), 2818. https://doi.org/10.3390/electronics10222818

Hsieh, J. Y., Lin, P. C., Sun, W. N., Lin, T. R., Kuo, C. C., & Hsu, H. T. (2025). Effectiveness of immersive virtual reality in nursing education for nursing students and nursing staffs: A systematic review and meta-analysis. Nurse Education Today, 151, 106725. https://doi.org/10.1016/j.nedt.2025.106725

Huang, S. Y., Tarng, W., & Ou, K. L. (2023). Effectiveness of ar board game on computational thinking and programming skills for elementary school students. Systems, 11(1), 25. https://doi.org/10.3390/systems11010025

Kim, H. Y., & Kim, E. Y. (2023). Effects of medical education program using virtual reality: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 20(5), 3895. https://doi.org/10.3390/ijerph20053895

Kolb, D.A. (1984). Experiential learning: experience as the source of learning and development. Prentice Hall.

Liu, J. Y. W., Yin, Y. H., Kor, P. P. K., Cheung, D. S. K., Zhao, I. Y., Wang, S., Su, J. J., Christensen, M., Tyrovolas, S., & Leung, A. Y. M. (2023). The effects of immersive virtual reality applications on enhancing the learning outcomes of undergraduate health care students: systematic review with meta-synthesis. Journal of Medical Internet Research, 25, e39989. https://doi.org/10.2196/39989

Liu, R., Wang, L., Lei, J., Wang, Q., & Ren, Y. (2020). Effects of an immersive virtual reality‐based classroom on students’ learning performance in science lessons. British Journal of Educational Technology, 51(6), 2034-2049. https://doi.org/10.1111/bjet.13028

Lui, A. L. C., Not, C., & Wong, G. K. W. (2023). Theory-based learning design with immersive virtual reality in science education: a systematic review. Journal of Science Education and Technology, 32, 390–432. https://doi.org/10.1007/s10956-023-10035-2

Mayer, R. E. (2005). The cambridge handbook of multimedia learning. Cambridge University Press.

Mystakidis, S., Christopoulos, A., & Pellas, N. (2022). A systematic mapping review of augmented reality applications to support STEM learning in higher education. Education and Information Technologies, 27, 1883–1927. https://doi.org/10.1007/s10639-021-10682-1

Neher, A. N., Bühlmann, F., Müller, M., Berendonk, C., Sauter, T., & Birrenbach, T. (2025). Virtual reality for assessment in undergraduate nursing and medical education – a systematic review. BMC Medical Education, 25, 292. https://doi.org/10.1186/s12909-025-06867-8

Oyelere, S.S., Bouali, N., Kaliisa, R., Obaido, G., Yunusa, A., & Jimoh, E. (2020). Exploring the trends of educational virtual reality games: a systematic review of empirical studies. Smart Learning Environments, 7, 31. https://doi.org/10.1186/s40561-020-00142-7

Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Journal of Clinical Epidemiology, 134, 178–189. https://doi-org.dti.sibucsc.cl/10.1016/j.jclinepi.2021.03.001

Pellas, N., Mystakidis, S., & Kazanidis, I. (2021). Immersive virtual reality in k-12 and higher education: a systematic review of the last decade scientific literature. Virtual Reality, 25, 835–861. https://doi.org/10.1007/s10055-020-00489-9

Petersen, G. B., Klingenberg, S., Mayer, R. E., & Makransky, G. (2020). The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. British Journal of Educational Technology, 51(6), 2099-2115. https://doi.org/10.1111/bjet.12991

Piaget, J. (1974). Seis estudios de psicología. Barral.

Prensky, M. (2009). Homo sapiens digital: de los inmigrantes y nativos digitales a la sabiduría digital. Aula Intercultural.

Prensky, M. (2013). Enseñar a nativos digitales. SM Ediciones.

Qiu, X., Shan, C., Yao, J., & Fu, Q. (2023). The effects of virtual reality on EFL learning: A meta-analysis. Education and Information Technologies, 29, 1379–1405. https://doi.org/10.1007/s10639-023-11738-0

Rubio-Aparicio, M., Sanchez-Meca, J., Marin-Martinez, F., & Lopez-Lopez, J. A. (2018). Guidelines for reporting systematic reviews and meta-analyses. Annals of Psychology, 34(2), 412-420. http://dx.doi.org/10.6018/analesps.34.2.320131

Sandoval-Henríquez, F. J., & Badilla-Quintana, M. G. (2021). Measuring stimulation and cognitive reactions in middle schoolers after using immersive technology: Design and validation of the TINMER questionnaire. Computers & Education, 166, 104157. https://doi.org/10.1016/j.compedu.2021.104157

Sandoval-Henríquez, F. J., & Badilla-Quintana, M. G. (2022). How elementary students experience the use of immersive technology. International Journal of Learning Technology, 17(2). https://doi.org/10.1504/IJLT.2022.10049983

Sandoval-Henríquez, F. J., Sáez-Delgado, F., & Badilla-Quintana, M. G. (2024). Systematic review on the integration of immersive technologies to improve learning in primary education. Journal of Computers in Education, 12, 477–502. https://doi.org/10.1007/s40692-024-00318-x

Sawilowsky. S. S. (2009). New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 8(2), 597–599. https://doi.org/10.22237/jmasm/1257035100

Sharples, M., Taylor, J., & Vavoula, G. (2010). A theory of learning for the mobile age: Learning through conversation and exploration across contexts. In R. Andrews & C. Haythornthwaite (Eds.), Handbook of Elearning Research (pp. 221–247). Sage Publications.

Tsai, C. C. (2020). The effects of augmented reality to motivation and performance in EFL vocabulary learning. International Journal of Instruction, 13(4), 987-1000.

Tsai, C. Y., & Lai, Y. C. (2022). Design and validation of an augmented reality teaching system for primary logic programming education. Sensors, 22(1), 389. https://doi.org/10.3390/s22010389

Tsai, C. Y., Ho, Y. C., & Nisar, H. (2021). Design and validation of a virtual chemical laboratory-An example of natural science in elementary education. Applied Sciences, 11(21), 10070. https://doi.org/10.3390/app112110070

Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. Journal of Educational and Behavioral Statistics, 30(3), 261–293. https://doi.org/10.3102/10769986030003261

Villena-Taranilla, R., Tirado-Olivares, S., Cozar-Gutierrez, R., & González-Calero, J. A. (2022). Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review, 35, 100434. https://doi.org/10.1016/j.edurev.2022.100434

Yildirim, F. S. (2020). The effect of the augmented reality applications in science class on students' cognitive and affective learning. Journal of Education in Science Environment and Health, 6(4), 259-267. https://doi.org/10.21891/jeseh.751023

Yildirim, F. S. (2021). Effectiveness of augmented reality implementation methods in teaching Science to middle school students. International Journal of Curriculum and Instruction, 13(2), 1024-1038.

Yildirim, I., & Seçkin, M. K. (2021). The effect of augmented reality applications in science education on academic achievement and retention of 6th grade students. Journal of Education in Science Environment and Health, 7(1), 56-71. https://doi.org/10.21891/jeseh.744351

Downloads

Published

2025-07-23

How to Cite

Sandoval-Henríquez, F. J., Sáez-Delgado, F., & Badilla-Quintana, M. G. (2025). Meta-analysis of the Effect of the Integration of Immersive Technologies on Learning in Primary Education. Cuadernos De Investigación Educativa, 16(2). https://doi.org/10.18861/cied.2025.16.2.4052

Issue

Section

Articles