Análise fatorial confirmatória de uma rubrica para avaliar o pensamento algorítmico em estudantes universitários

Autores

DOI:

https://doi.org/10.18861/cied.2024.15.2.3797

Palavras-chave:

pensamento algorítmico, estudantes do ensino superior, avaliação educacional, análise fatorial confirmatória, educação STEAM

Resumo

O pensamento algorítmico é um elemento-chave para que os indivíduos estejam alinhados com a era da computação. Seu estudo é importante não apenas no âmbito da ciência da computação, mas também na didática da matemática e em todos os contextos STEAM. No entanto, apesar de sua importância, faltam pesquisas que o tratem como um construto independente e que validem suas definições operacionais ou rubricas para avaliar seu desenvolvimento em estudantes universitários por meio de análises fatoriais confirmatórias. O objetivo deste artigo é realizar uma validação de construto por meio de análise fatorial confirmatória de uma rubrica para o construto pensamento algorítmico, especificamente para medir seu nível de desenvolvimento em estudantes universitários. É realizada uma análise fatorial confirmatória sobre uma série de modelos baseados em uma definição operacional e uma rubrica previamente apresentadas na literatura. As propriedades psicométricas desses modelos são avaliadas, e a maioria deles é descartada. Ainda são necessárias mais pesquisas para ampliar e consolidar uma definição operacional útil e a rubrica correspondente para avaliar o pensamento algorítmico em estudantes universitários. No entanto, a análise fatorial confirmatória realizada confirma a validade de construto da rubrica, pois esta apresenta propriedades psicométricas muito boas, e conduz a uma definição operacional de pensamento algorítmico composta por quatro componentes: análise do problema, construção do algoritmo, identificação dos casos de entrada, e representação do algoritmo.

Downloads

Não há dados estatísticos.

Referências

Bacelo, A., & Gómez-Chacón, I. M. (2023). Characterizing algorithmic thinking: A university study of unplugged activities. Thinking Skills and Creativity, 48, Article 101284. https://doi.org/10.1016/j.tsc.2023.101284

Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: Cognitive domain (Vol. 1). McKay.

Brown, T. A. (2006). Confirmatory factor analysis for applied research. Guilford Press.

Bubica, N., & Boljat, I. (2021). Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model. Informatics in Education, 21(3), 425-463. https://doi.org/10.15388/infedu.2022.17

Cebrián de la Serna, M., & Monedero Moya, J. J. (2014). Evolución en el diseño y funcionalidad de las rúbricas: Desde las rúbricas «cuadradas» a las erúbricas federadas. REDU. Revista de Docencia Universitaria, 12(1), 81-98. https://doi.org/10.4995/redu.2014.6408

Chen, P., Yang, D., Metwally, A. H. S., Lavonen, J., & Wang, X. (2023). Fostering computational thinking through unplugged activities: A systematic literature review and meta-analysis. International Journal of STEM Education, 10(1), Article 47. https://doi.org/10.1186/s40594-023-00434-7

Chowdhury, F. (2019). Application of Rubrics in the Classroom: A Vital Tool for Improvement in Assessment, Feedback and Learning International Education Studies, 12(1), 61–68. International Education Studies, 12(1), 61–68. https://doi.org/10.5539/ies.v12n1p61

Futschek, G. (2006). Algorithmic Thinking: The Key for Understanding Computer Science. In R. T. Mittermeir (Ed.), International conference on informatics in secondary schools—Evolution and perspectives (pp. 159–168). Springer-Verlag.

Greiff, S., Wüstenberg, S., Goetz, T., Vainikainen, M.-P., Hautamäki, J., & Bornstein, M. H. (2015). A longitudinal study of higher-order thinking skills: Working memory and fluid reasoning in childhood enhance complex problem-solving in adolescence. Frontiers in Psychology, 6, Article 1060. https://doi.org/10.3389/fpsyg.2015.01060

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons from a middle school classroom. In P. J. Rich & C. B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (pp. 269–288). Springer. https://doi.org/10.1007/978-3-319-52691-1_17

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science education: Perspectives on teaching and learning in school. Bloomsbury Publishing.

Grozdev, S., & Terzieva, T. (2015). A didactic model for developmental training in computer science. Journal of Modern Education Review, 5(5), 470-480. https://doi.org/10.15341/jmer(2155-7993)/05.05.2015/005

Jordan Muiños, F. M. (2021). Cut-off value of the fit indices in Confirmatory Factor Analysis. {PSOCIAL}, 7(1), 66-71. https://publicaciones.sociales.uba.ar/index.php/psicologiasocial/article/view/6764

Juškevičienė, A. (2020). Developing Algorithmic Thinking Through Computational Making. In D. Gintautas, B. Jolita, & K. Janusz (Eds.), Data Science: New Issues, Challenges and Applications (Vol. 869, pp. 183-197). Springer. https://doi.org/10.1007/978-3-030-39250-5_10

Juškevičienė, A., & Dagienė, V. (2018). Computational Thinking Relationship with Digital Competence. Informatics in Education, 17(2), 265-284. https://doi.org/10.15388/infedu.2018.14

Kadijevich, D. M., Stephens, M., & Rafiepour, A. (2023). Emergence of Computational/Algorithmic Thinking and Its Impact on the Mathematics Curriculum. In Y. Shimizu & R. Vithal (Eds.), Mathematics Curriculum Reforms Around the World (pp. 375-388). Springer International Publishing. https://doi.org/10.1007/978-3-031-13548-4_23

Kanaki, K., & Kalogiannakis, M. (2022). Assessing Algorithmic Thinking Skills in Relation to Age in Early Childhood STEM Education. Education Sciences, 12(6), Article 380. https://doi.org/10.3390/educsci12060380

Kayam, M., Fuwa, M., Kunimune, H., Hashimoto, M., & Asano, David. K. (2016). Assessing your algorithm: A program complexity metrics for basic algorithmic thinking education. In 11th International Conference on Computer Science & Education (ICCSE), 309–313. https://doi.org/10.1109/ICCSE.2016.7581599

Kirçali, A. Ç., & Özdener, N. (2023). A Comparison of Plugged and Unplugged Tools in Teaching Algorithms at the K-12 Level for Computational Thinking Skills. Technology, Knowledge and Learning, 28(4), 1485-1513. https://doi.org/10.1007/s10758-021-09585-4

Knuth, D. E. (1974). Computer Science and its Relation to Mathematics. The American Mathematical Monthly, 81(4), 323–343. https://doi.org/10.1080/00029890.1974.11993556

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569. https://doi.org/10.1016/j.chb.2017.01.005

Lafuente Martínez, M., Lévêque, O., Benítez, I., Hardebolle, C., & Zufferey, J. D. (2022). Assessing Computational Thinking: Development and Validation of the Algorithmic Thinking Test for Adults. Journal of Educational Computing Research, 60(6), 1436-1463. https://doi.org/10.1177/07356331211057819

Lehmann, T. H. (2023). How current perspectives on algorithmic thinking can be applied to students’ engagement in algorithmatizing tasks. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-023-00462-0

Lockwood, E., DeJarnette, A. F., Asay, A., & Thomas, M. (2016). Algorithmic Thinking: An Initial Characterization of Computational Thinking in Mathematics. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings of the 38th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (PMENA 38) (pp. 1588–1595). ERIC. https://eric.ed.gov/?id=ED583797

Martins-Pacheco, L. H., da Cruz Alves, N., & von Wangenheim, C. G. (2020). Educational Practices in Computational Thinking: Assessment, Pedagogical Aspects, Limits, and Possibilities: A Systematic Mapping Study. In H. C. Lane, S. Zvacek, & J. Uhomoibhi (Eds.), Computer Supported Education (pp. 442-466). Springer International Publishing. https://doi.org/10.1007/978-3-030-58459-7_21

Mertler, C. A. (2001). Designing scoring rubrics for your classroom. Practical assessment, research, and evaluation, 7(1), Article 25. https://doi.org/10.7275/gcy8-0w24

Moreira Gois, M., Eliseo, M. A., Mascarenhas, R., Carlos Alcântara De Oliveira, I., & Silva Lopes, F. (2023). Evaluation rubric based on Bloom's taxonomy for assessment of students learning through educational resources. In 15th International Conference on Education and New Learning Technologies, (pp. 7765-7774). https://doi.org/10.21125/edulearn.2023.2021

Moss, S. (2016, June 27). Fit indices for structural equation modelling. Sicotest.com. https://www.sicotests.com/newpsyarticle/Fit-indices-for-structural-equation-modeling

Navas-López, E. A. (2021). Una Caracterización del Desarrollo del Pensamiento Algorítmico de los Estudiantes de las carreras de Licenciatura en Matemática y Licenciatura en Estadística de la sede central de la Universidad de El Salvador en el período 2018-2020 [Master’s Thesis, Universidad de El Salvador]. https://hdl.handle.net/20.500.14492/12041

Navas-López, E. A. (2024). Relaciones entre la matemática, el pensamiento algorítmico y el pensamiento computacional. IE Revista de Investigación Educativa de la REDIECH, 15, e1929. https://doi.org/10.33010/ie_rie_rediech.v15i0.1929

Noor, N. M. M., Mamat, N. F. A., Mohemad, R., & Mat, N. A. C. (2023). Systematic Review of Rubric Ontology in Higher Education. International Journal of Advanced Computer Science and Applications, 14(10), 147-155. https://doi.org/10.14569/IJACSA.2023.0141016

Nordby, S. K., Bjerke, A. H., & Mifsud, L. (2022). Computational Thinking in the Primary Mathematics Classroom: A Systematic Review. Digital Experiences in Mathematics Education, 8(1), 27-49. https://doi.org/10.1007/s40751-022-00102-5

Oomori, Y., Tsukamoto, H., Nagumo, H., Takemura, Y., Iida, K., Monden, A., & Matsumoto, K. (2019). Algorithmic Expressions for Assessing Algorithmic Thinking Ability of Elementary School Children. In 2019 IEEE Frontiers in Education Conference (FIE), 1-8. https://doi.org/10.1109/FIE43999.2019.9028486

Ortega Ruipérez, B., & Asensio Brouard, M. (2021). Evaluar el Pensamiento Computacional mediante Resolución de Problemas: Validación de un Instrumento de Evaluación. Revista Iberoamericana de Evaluación Educativa, 14(1), 153-171. https://doi.org/10.15366/riee2021.14.1.009

Otero Avila, C., Foss, L., Bordini, A., Simone Debacco, M., & da Costa Cavalheiro, S. A. (2019). Evaluation Rubric for Computational Thinking Concepts. In IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 279-281. https://doi.org/10.1109/ICALT.2019.00089

Park, H., & Jun, W. (2023). A Study of Development of Algorithm Thinking Evaluation Standards. International Journal of Applied Engineering and Technology, 5(2), 53-58.

Poulakis, E., & Politis, P. (2021). Computational Thinking Assessment: Literature Review. In T. Tsiatsos, S. Demetriadis, A. Mikropoulos, & V. Dagdilelis (Eds.), Research on E-Learning and ICT in Education (pp. 111-128). Springer International Publishing. https://doi.org/10.1007/978-3-030-64363-8_7

Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining Assessment Tools for a Comprehensive Evaluation of Computational Thinking Interventions. In S. C. Kong & H. Abelson (Eds.), Computational Thinking Education (pp. 79-98). Springer. https://doi.org/10.1007/978-981-13-6528-7_6

Sadykova, O. V., & Usolzev, A. (2018). On the concept of algorithmic thinking. In SHS Web Conferences – International Conference on Advanced Studies in Social Sciences and Humanities in the Post-Soviet Era (ICPSE 2018), 55. https://doi.org/10.1051/shsconf/20185503016

Selby, C. C., & Woollard, J. (2013). Computational Thinking: The Developing Definition. In 18th annual conference on innovation and technology in computer science education. https://eprints.soton.ac.uk/356481/

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Stephens, M., & Kadijevich, D. M. (2020). Computational/Algorithmic Thinking. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 117-123). Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_100044

Sung, J. (2022). Assessing young Korean children’s computational thinking: A validation study of two measurements. Education and Information Technologies, 27(9), 12969–12997. https://doi.org/10.1007/s10639-022-11137-x

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 1-22. https://doi.org/10.1016/j.compedu.2019.103798

Tsai, M. J., Liang, J. C., Lee, S. W. Y., & Hsu, C. Y. (2022). Structural Validation for the Developmental Model of Computational Thinking. Journal of Educational Computing Research, 60(1), 56-73. https://doi.org/10.1177/07356331211017794

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7–14. https://doi.org/10.17471/2499-4324/922

Zúñiga Muñoz, R. F., Hurtado Alegría, J. A., & Robles, G. (2023). Assessment of Computational Thinking Skills: A Systematic Review of the Literature. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 18(4), 319-330. https://doi.org/10.1109/RITA.2023.3323762

Publicado

2024-10-23

Como Citar

Navas-López, E. A. (2024). Análise fatorial confirmatória de uma rubrica para avaliar o pensamento algorítmico em estudantes universitários. Cuadernos De Investigación Educativa, 15(2). https://doi.org/10.18861/cied.2024.15.2.3797

Edição

Seção

Artigos