Psychometrics, profiles and bias

The case for facial recognition

Authors

DOI:

https://doi.org/10.18861/ic.2021.16.2.3156

Keywords:

psychometrics, profile-dividum, facial recognition, bias

Abstract

Psychometric studies allow measurements based on vector correlations that produce predictions of human behavioral traits. With increasing digitization, psychometrics has been used to design profiles of individuals through various mechanisms: Big Data, Machine Learning, among others. Far from being neutral, these profiles are based on methodologies which produce biases that affect the profiled individuals. This article proposes that psychometrics elaborates a dividual-profile that generates a reduction of individuals and produces forms that augur the way in which they should behave. Here the conjecture is exemplified from the analysis of a case of psychometric measurement based on facial recognition.

Downloads

Download data is not yet available.

Author Biography

Juan Camilo Gómez, Instituto Colombiano para la Evaluación

Magíster en Comunicación y Cultura, Facultad de Ciencias Sociales, Universidad de Buenos Aires (Argentina). Editor de investigaciones sobre evaluación y medición, Instituto Colombiano para la Evaluación (Colombia). Ha publicado artículos en distintas revistas académicas, entre otros: “Las huellas digitales del comportamiento Humano. Gustos, neoliberalismo y algoritmos” (2020) y “Del Homo Economicus al Dividuo: del neoliberalismo a la gubernamentalidad algorítmica” (2021). Sus temas de investigación giran en torno a la epistemología producida por lo digital, las afectaciones económicas, políticas y sociales de la tecnología (en especial las redes sociales) y las implicaciones sociales de la psicometría y la estadística.

References

Ballew, C. & Todorov, A. (2007). Predicting political elections from rapid and unreflective face judgments. Proceedings of the National Academy of Sciences, 104, 17948-17953.

Benjamin, R. (2019). Race after technology: Abolitionist tools for the new jim code. Oxford: Social Forces.

Berns, T. & Rouvroy, A. (2016). Gubernamentalidad algorítmica y perspectivas de emancipación. ¿La disparidad como condición de individuación a través de la relación? Adenda Filosófica, (1), 88-116.

Bishop, C. (2006). Pattern Recognition and Machine Learning. Berlin: Springer.

Brand, S. (1994). How buildings learn: What happens after they´re built. New York: Viking-Penguin.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M. & Zisserman, A. (2018). Vggface2: A dataset for recognising faces across pose and age. In AA.VV., IEEE International Conference on Automatic Face & Gesture Recognition (pp. 67-74). DOI Bookmark: 10.1109/FG.2018.00020

Carpinella, M. & Johnson, K. (2013). Appearance-based politics: Sex-typed facial cues communicate political party affiliation. Journal of Experimental Social Psychology. 49(1), 156-160. Recuperado de: https://doi.org/10.1016/j.jesp.2012.08.009

Deleuze, G. (1999). Posdata sobre las sociedades de control. En Ferrer, C. (Ed.), El lenguaje libertario. Antología del pensamiento anarquista contemporáneo (pp. 101-109). Buenos Aires: Altamira.

Geisinger, K. (Ed.) (2013). APA Handbook of Testing and Assessment in Psychology. Vol 1. Test Theory and Assessment in Industrial and Organizational Psychology. Washington, DC: American Psychological Association.

Gelman, A. (2013). Bayesian Data Analysis. London: CRC.

Gómez-Barrera, J. (2020). Las huellas digitales del comportamiento humano: gustos, neoliberalismo y algoritmos. MEDIAÇÕES, 25(3). DOI: 10.5433/2176-6665.2020.3v25n3p712

Hill, K. (June 24, 2020). Wrongfully Accused by an Algorithm. The New York Times. Recuperado de: https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html

Holden, D. (2000). Psycometrics. In Kazdin, A. (Ed.), Encyclopedia of psychology (pp. 417-419). New York: Oxford University Press.

Jones, L. & Thissen, D. (2007). A History of Overview of Psychometrics. In Rao, C. & Sinharay, S. (Ed.), Handbook of Statistics 26. Psychometrics (pp. 1-27). Amsterdam: Elsevier.

Kosinski, M., Stillwell, D. J. & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences,110, 5802-5805.

Kosinski, M. (2021). Facial recognition technology can expose political orientation from naturalistic facial images. Nature Research, 11. DOI: https://doi.org/10.1038/s41598-020-79310-1

Lipton, Z. C. (2016). The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57.

Markman, A. (1998). Knowledge representation. Mahwah: Erlbaum.

Martínez, A., Hernández, M. & Hernández, L. (2006). Psicometría. Madrid: Alianza.

Messick, S. (1989). Validity. In Linn, R. (Ed.), Educational measurement (pp. 13-103). New York: American Council on Education/Macmillan.

Mislevy, R.J. & Gitomer, D. H. (1996). The role of probability-based inference in an intelligent tutoring system. User-Modeling and User-Adapted Interaction, 5, 253-282.

Redacción MIT Technology Review (1 de marzo de 2021). Ocho predicciones sobre el impacto de la tecnología en nuestra vida en 2021. MIT Technology Review. Recuperado de: https://www.technologyreview.es/s/13212/ocho-predicciones-sobre-el-impacto-de-la-tecnologia-en-nuestra-vida-en-2021

Muñiz, J. (2003). Teoría clásica de los tests. Madrid: Pirámide.

Pasquinelli, M. & Joler, V. (May 1, 2020). The Nooscope Manifested: Artificial Intelligence as Instrument of Knowledge Extractivism. KIM HfG Karlsruhe and Share Lab. Recuperado de: https://nooscope.ai

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco: Morgan Kaufmann.

Roberts, T. & Bruce, V. (1988). Feature saliency in judging the sex and familiarity of faces. Perception, 17, 475-581.

Rodríguez, P. (2019). Las palabras en las cosas: saber, poder y subjetivación entre algoritmos y biomoléculas. Buenos Aires: Cactus.

Rule, N. & Ambady, N. (2008). The face of success: Inferences from Chief Executive Officers’ appearance predict company profits. Psychol Sci, 19, 109-111.

Rule, N. & Ambady, N. (2010). Democrats and Republicans can be differentiated from their faces. PLoS ONE (5). DOI: https://doi.org/10.1371/journal.pone.0008733

Rule, N., Ambady, N., Adams, R. & Macrae, C. (2008). Accuracy and awareness in the perception and categorization of male sexual orientation. Journal of Personality and Social Psychology, 95, 1019-1028.

Rust, J. & Golombok, S. (2009). Modern Psychometrics. The Science of Psychological Assessment. London: Routledge.

Rust, J., Kosinski, M. & Stillwell, D. (2021). Modern Psychometrics: The Science of Psychological Assessment. London: Routledge.

Sampson, E. E. (1981). Cognitive psychology as ideology. American Psychologist, 36, 730-743.

Segalin, C., Celli, F., Polonio, L., Kosinski, M., Stillwell, D., Sebe, D., Cristani, M. & Lepri, B. (2017). What your Facebook Profile Picture Reveals about your Personality. Proceedings of the 25th ACM international conference on Multimedia, 460-468. DOI: https://doi.org/10.1145/3123266.3123331

Sibley, C. G., Osborne, D. & Duckitt, J. (2012). Personality and political orientation: Meta-analysis and test of a Threat-Constraint Model. Journal of Research in Personality, 46(6), 664-677.

Stevens, S. (1946). On the theory of scales of measurement. Science, 106, 667-680.

Suárez, M. (2004). An inferential conception of scientific representation. Philosophy of Science, 71, 767-779.

Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87, 449-508.

Wang, Y. & Kosinski, M. (2018). Deep Neuoral networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Research in Personality, 114(2). DOI: 10.1037/pspa0000098

Zebrowitz, L. (1997). Reading faces: Window to the soul? Boulder: Westview Press.

Published

2021-08-18

How to Cite

Gómez, J. C. (2021). Psychometrics, profiles and bias: The case for facial recognition. InMediaciones De La Comunicación, 16(2). https://doi.org/10.18861/ic.2021.16.2.3156

Issue

Section

Articles