Modelo de progressão acadêmica de alunos online no Ensino Superior
DOI:
https://doi.org/10.18861/cied.2022.13.1.3181Palavras-chave:
ensino eletrônico, educação a distância, ensino superior, deserção dos alunos, persistência acadêmica, serviços de apoio acadêmico, alunos adultosResumo
A oferta formativa de programas online tem aumentado, sendo uma oportunidade para quem precisa conciliar o estudo com outras atividades. As taxas de retenção neste tipo de formação são baixas. Vários fatores explicam a evasão de alunos adultos nos programas online. O desenho é misto do tipo explicativo sequencial. A fase quantitativa permitiu a identificação de diferenças significativas entre os grupos para as variáveis em estudo, a partir de uma amostra de 9.405 alunos. A fase qualitativa incluiu a aplicação de entrevistas. Constatou-se que o acompanhamento do tutor, a aprovação dos cursos de habilidades básicas, a participação dos alunos nas atividades de indução e o atendimento da unidade de apoio socioafetivo influenciam diretamente na deserção dos alunos, na sua participação na plataforma online e na média das notas. Os alunos valorizam a comunicação eficaz com professores e tutores. Deve ser gerada uma rede de contenção para apoiar o processo de continuidade dos estudos com diversas ações, também, a influência de cada curso é diferente em relação às necessidades apresentadas por cada aluno, mostrando a importância de que as instituições implementem uma diversidade de apoios que serão utilizados pelos alunos de acordo com as suas necessidades.
Downloads
Referências
Arguedas, M., Daradoumis, T., & Xhafa, F. (2016). Analyzing the effects of emotion management on time and self-management in computer-based learning. Computers in Human Behavior, 63(October), 517–529. https://doi.org/10.1016/j.chb.2016.05.068
Arguedas, M., Xhafa, F., Casillas, L., Daradoumis, T., Peña, A., & Caballé, S. (2018). A model for providing emotion awareness and feedback using fuzzy logic in online learning. Soft Computing, 22(3), 963–977. https://doi.org/10.1007/s00500-016-2399-0
Armstrong, S. N., Early, J. O., Burcin, M. M., Bolin, K., Holland, N., & No, S. (2018). New Media Tools Impact on Online, Health Science Students’ Academic Persistence and Support: Lessons Learned from Two Pilot Studies. TechTrends, 62(3), 266–275. https://doi.org/10.1007/s11528-018-0261-1
Beluce, A. C., & Oliveira, K. L. de. (2015). Students’ Motivation for Learning in Virtual Learning Environments. Paidéia (Ribeirão Preto), 25(60), 105–113. https://doi.org/10.1590/1982-43272560201513
Cacciamani, S., Cesareni, D., Perrucci, V., Balboni, G., & Khanlari, A. (2019). Effects of a social tutor on participation, sense of community and learning in Online university courses. British Journal of Educational Technology, 50(4), 1771–1784. https://doi.org/10.1111/bjet.12656
Choi, H. J., & Kim, B. U. (2018). Factors Affecting Adult Student Dropout Rates in the Korean Cyber-University Degree Programs. Journal of Continuing Higher Education, 66(1), 1–12. https://doi.org/10.1080/07377363.2017.1400357
Choi, H. J., & Park, J. H. (2018). Testing a path-analytic model of adult dropout in online degree programs. Computers and Education, 116, 130–138. https://doi.org/10.1016/j.compedu.2017.09.005
Creswell, J. & Plano Clark, V. (2011). Designing and conducting mixed methods research. SAGE.
Escudero Muñoz, J. (2014). Contexto, contenidos y procesos de innovación educativa: ¿el dónde y el cómo de la tecnología educativa? Docencia e Investigación: Revista de La Escuela Universitaria de Magisterio de Toledo, 39(24), 13–36.
Firat, M., Öztürk, A., Güneş, İ., Çolak, E., Beyaz, M., & Büyük, K. (2019). How e-learning engagement time affects academic achievement in e-learning environments. A large-scale study of open and distance learners. Open Praxis, 11(2), 129–141. http://doi.org/10.5944/openpraxis.11.2.920
Flick, U. (2007). Introducción a la investigación cualitativa. Morata.
Goda, Y., Yamada, M., Kato, H., Matsuda, T., Saito, Y., & Miyagawa, H. (2015). Procrastination and other learning behavioral types in e-learning and their relationship with learning outcomes. Learning and Individual Differences, 37, 72-80. https://doi.org/10.1016/j.lindif.2014.11.001
Guetterman, T. C., Babchuk, W. A., Howell Smith, M. C., & Stevens, J. (2019). Contemporary Approaches to Mixed Methods–Grounded Theory Research: A Field-Based Analysis. Journal of Mixed Methods Research, 13(2), 179–195. https://doi.org/10.1177/1558689817710877
Heidrich, L., Victória Barbosa, J. L., Cambruzzi, W., Rigo, S. J., Martins, M. G., & dos Santos, R. B. S. (2018). Diagnosis of learner dropout based on learning styles for online distance learning. Telematics and Informatics, 35(6), 1593–1606. https://doi.org/10.1016/j.tele.2018.04.007
Instituto Profesional IACC (2021). Retención neta de 1er año cerrada. https://www.iacc.cl/cifras-de-iacc/#1624485041500-0df17495-5964
Johnson, R. B. (2017). Dialectical Pluralism: A Metaparadigm Whose Time Has Come. Journal of Mixed Methods Research, 11(2), 156–173. https://doi.org/10.1177/1558689815607692
Kansteiner, K., & König, S. (2020). The Role(s) of Qualitative Content Analysis in Mixed Methods Research Designs. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 21(1). https://doi.org/10.17169/FQS-21.1.3412
Kara, M., Erdoğdu, F., Kokoç, M., & Cagiltay, K. (2019). Challenges Faced by Adult Learners in Online Distance Education: A Literature Review. Open Praxis, 11(1), 5. https://www.openpraxis.org/articles/10.5944/openpraxis.11.1.929/
Kuckartz, U. (2014). Qualitative text analysis: A guide to methods, practice and using software. London: SAGE.
Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer programming courses. Computers and Education, 55(1), 218–228. https://doi.org/10.1016/j.compedu.2010.01.007
Lee, J., Song, H. D., & Hong, A. J. (2019). Exploring factors, and indicators for measuring students’ sustainable engagement in e-learning. Sustainability (Switzerland), 11(4). https://doi.org/10.3390/su11040985
Lim, J. M. (2016). Predicting successful completion using student delay indicators in undergraduate self-paced online courses. Distance Education, 37(3), 317–332. https://doi.org/10.1080/01587919.2016.1233050
Mateo Andrés, J. (2004). La investigación ex post-facto. En R. Bisquerra (Ed.), Metodología de la investigación educativa (pp. 195–230). La Muralla.
Muljana, P. S., & Luo, T. (2019). Factors contributing to student retention in online learning and recommended strategies for improvement: A systematic literature review. Journal of Information Technology Education: Research, 18, 19–57. https://doi.org/10.28945/4182
Noboa, A., & Robaina, N. (2014). Entrevista cualitativa. En A. Lucas & A. Noboa (Eds.), Conocer lo social: Estrategias, técnicas de construcción y análisis de datos (p. 347). Fragua.
Orellana, D., Segovia, N., & Rodríguez Cánovas, B. (2020). El abandono estudiantil en programas de educación superior virtual: revisión de literatura TT - Student dropout in online higher education programs: literature review. Revista de la educación superior, 49(194), 47–64. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-27602020000200047
Pluye, P., & Hong, Q. N. (2014). Combining the power of stories and the power of numbers: Mixed methods research and mixed studies reviews. Annual Review of Public Health, 35(October 2013), 29–45. https://doi.org/10.1146/annurev-publhealth-032013-182440
Rovai, A. P., & Wighting, M. J. (2005). Feelings of alienation and community among higher education students in a virtual classroom. Internet and Higher Education, 8(2), 97–110. https://doi.org/10.1016/j.iheduc.2005.03.001
Sabariego, M., Massot, I., & Dorio, I. (2004). Métodos de investigación cualitativa. En R. Bisquerra (Ed.), Metodología de la investigación educativa (pp. 293–328). La Muralla.
Saldaña, J. (2013). The Coding Manualfor Qualitative Researchers. SAGE Publications.
Schoonenboom, J., & Johnson, R. B. (2017). Wie man ein Mixed Methods-Forschungs-Design konstruiert. Kolner Zeitschrift Fur Soziologie Und Sozialpsychologie, 69, 107–131. https://doi.org/10.1007/s11577-017-0454-1
Soffer, T., & Cohen, A. (2019). Students’ engagement characteristics predict success and completion of online courses. Journal of Computer Assisted Learning, 35(3), 378–389. https://doi.org/10.1111/jcal.12340
Staller, K. M. (2015). Qualitative analysis: The art of building bridging relationships. Qualitative Social Work, 14(2), 145–153. https://doi.org/10.1177/1473325015571210
Su, J., & Waugh, M. L. (2018). Online Student Persistence or Attrition: Observations Related to Expectations, Preferences, and Outcomes. Journal of Interactive Online Learning, 16(1), 63–79.
Wladis, C., Conway, K., & Hachey, A. C. (2015). Using course-level factors as predictors of online course outcomes: a multi-level analysis at a US urban community college. Studies in Higher Education, 42(1), 184–200. https://doi.org/10.1080/03075079.2015.1045478
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.